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2.0 APPROACH

L. Selection of Appropriate Algorithms

Numerous classification algorithms were considered as candidate methods for extracting natural
and manmade features. These included the parametric supervised classifiers such as the Bayesian
discriminnt and Mahalanobis distance classifiers; non-parametric supervised classifiers such as the
ample Euclidean minimum distance, and error correction techniques such as the Ho-Kashyap and
Vh -Hoff methods; as well as unsupervised clustering techniques such as K-Means and the

ISODATA methods. Because these methods are commonly documented, knowledge about them is
assumed, and details are only brought into the discussion as needed.5 Mathematical descriptions
of the selected algorithms are given for reference and for the sake of being precise about what is
actually being tested.

Past experience, along with some theoretical considerations, led investigators to exclude clustering
methods from the current effort. Such methods are perhaps best suited for sorting pixels in a non-
homogeneous training class into a small number of homogeneous ones, as discussed in Section
2.2.1. However, clustering on an image containing anything but the simplest of scenes should be
avoided. During an effort conducted during the Persian Gulf War that was directed at detecting oil
against a water background, the ISODATA/ISOCLASS method was found to give unstable
results.6 In particular, two Landsat TM images containing almost identical scenes were clustered
using the same ISODATA process and running parameters. One of the resultant class map images
disp aed very impressive results that were in fact judged better than the results produced from the
Bayesian discriminant and Euclidean minimum distance methods; however, the second image
produced results that were nonsense and totally useless for delineating oil. KMEANS is a simpler
algorithm which is an alternative; however, this clustering method requires a priori knowledge of
the number of clusters. Both methods are, of course, nonparametric.

From a mathematical viewpoint, the disadvantage in using ISODATA/ISOCLASS is that finding a
unique global solution cannot be guaranteed. This clustering technique may settle into a local
rather than global solution (the minimized value of its objective function is not a global minimum).
The local solution generally depends on the initial starting estimates for the seed clusters and
spe ng different seed points for the initial clusters can produce different classification outputs.

differences may or may not be significant, but nevertheless a unique solution can never be
guaranteed. In the case of the Persian Gulf study, the results from the second image apparently
settled into such a local minimum, and this solution did not correspond to the reality of the ground
features within the scene.

The error-correction procedures (nonparametric) were not considered because of the desire to
ultimately use a rejection criterion for pixels that do not match a training class or that correspond to
a mixture of classes (the need for this rejection capability is discussed below). From a theoretical
viewpoint, the most appealing approach to invoking a rejection statistic is to work within the
framework of a parametric model. Although a parametric-based rejection statistic could be
computed separately, it seemed more appropriate to use a parametric model throughout this stage of

kbharles w. Therrien. Decision Estimation and Classification. New York, NY: John Wiley & Sons, 1989.
sing-Tu Sow. Pattern Recognition - Applications to Large Data-Set Problems. New York, NY: Marcel Dekker, Inc., 1984.

6 Robert Rand, Donald Davis, M.B. Satterwhite and John Anderson. Methods of Monitoring the Persian Gulf Oil Spill
Ustng Digital and Hardcopy Multiband Data. Fort Belvoir, VA: U.S. Army Topographic Engineer Center, TEC-0014,

August 1992.
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classification. Also, some limited experience with the Widrw-How wil m A* Mb 4w
solution (although guaranteed to converge) could be rather slow to cma

Neural networks, such as training by back propagation, are a rdetttwl m q'vs- s ,.o
promising; however, they are also computationally very intensive md u•#Aa , W
much effort to implement and study, given the resources availa". IU &, sw* a -•- -

conventional multivariate methods are found to be significant ad camm tu •,., .U .....
network approach may be a promising alternative.

Therefore, based on the above arguments, the focus of this efftw sv (w no , i u
Euclidean minimum distance, the Bayesian disciminant, mad MaA* w. .aaw- ýt,
Euclidean minimum distance was included as an alternative smak =w * *w w * -vs
to the other more complex methods. Given that this method is pembep a avh . a
classification methods, one can examine the degree of improw*aa c bVuawu,* "-* -
invoking more complex mathematical models. All these dlamfien a*u e #€ i - .
gj (x) to select a class for each observation vector x. Given dtht ,t 4 ,.-.lo, -adV- ...

decision rule is to choose the class o)i which corresponds to the mataa .. d - X

In an effort to resolve the mixed-pixel problem, a linear mizi M W. W,* --
basic method is built on the statistical linear modeling appramch as aMM a.,.. O-..
analysis. Spectral endmembers (usually, pure pixels) are defined a aw uvaqwma
variables, and the mixed pixel of interest is defined as the depes du wU V~4i -
recently been proposed by certain researchers for b =oad-band ow;;;, *%M. VWs *
data (see footnotes 3 and 4 Section 1.0). As will be discused. im, h *o 4"4,.0 4,.-. i

approached with caution. However, a couple of constraiz can bg MA. m.. a*1.,... "..
help screen the number of physically allowable combinabo and w6w m&• -,l.. i,.
conform to what is physically expected from a linear mixing pboo Ir O ,,h ....
physical constraints that will be discussed, we attempt to ovamera yumnsm a. ao..•-
basic model and avoid misusing the linear regression method. Tka qywwo, . , .....

constraints, is proposed in Section 2.1.5 and later analyzed by eex. # .ww-

2.1.1 Euclidean Minimum Distance Clazdsier.

The Euclidean minimum distance classifier is simple and c UpFaWms• t, W"
classifier, meaning that the decision surfaces are hyperplanea The AnIM ¶•-*.V.*

gi (x) = -r2(x) (X (- w), (X.•,

where x is the n dimensional pixel vector being classified, and jaP v e . 4m ... ,-..

for class ooi. Notice the maximum gi (x) corresponds to the momwwo a ,......

The function gi (x) is evaluated for each class, and the pixel a .f *. .. *o
maximum value of g1 (x).

This method is most appropriate when the components of a v em&W m , ,, ,w 0
variances. In our case of broad-band spectral data, this mesm a tm& *i ,. ,.•
and have equal variance. Of course, it is commonly known th b it. Ow .ow
dimensionality of the image data is quite high, or the clam wn ¶wvatt v,4 o ...
unlikely that such linear surfaces will be adequate to segpewt oe w ,M, vi.. •,V ..P.
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APPROACH

2.1- 2 awasia Cauuiflar

The Bayesian classifier is a quadratic algorithm that generates hyperquadric decision surfaces (i.e.
hyperplanes, hyperspheres, hypereilipsoids, hyperparabloids). Accordingly, it is also more
complex and computationally slower. From a statistical point of view, the algorithm is attractive
because it weights the variables, and it accounts for correlation among them. Under the
assumption that class data belong to multivariate normal populations, the method is optimal in the
sense that it minimizes the probability of classification error. The multivariate normal (MVN)
assumption allows the distr'butional properties of each class to be completely specified by a mean
vector and covariance matrix. Unfortunately, violations of the MVN assumption (quite common in
practice) and difficulties in estimating the class covariance matrices can potentially lead to poor
performance.

The conditional probability function for a multivariate normal random vector x - MVN(14 Z)
belonging to class "i is

fxiw('I Woi) - 1 exp- L.l(x --O(2x)n/214l/2

where Mi is the covariance matrix for class wo, and n is the dimension of each pixel vector x and

each mean vector pi.

The Bayes classifier appeals to the well-known Bayes Theorem and then uses the logarithm of the
a posrior probability fwpc(wdx) = fxlw(x4 w5) * P(oi) as the definition of the Bayes discriminant
function:

g,(x)= - * (X- ,i)'1(x - ,t,) - I log I III + log P(coj) - 1 log2x

During this study, the a pri probabilities P( arm set equal aid do not contribute to the
decision. Since the last term is a constant that also does not contribute to the decision, the Bayes
discriminant function used in this study is

3C () - •I. (X - JAtY •If(X- - -j log I Zl

In obtaining good performance, the MVN assumpXion seems to be more critical for the quadratic
clsifiers (such as Bayes) than it is for the linear ones.7 One remon for this is that te
mathematical pr-pe r-i the tue decision regio am well behaved for MVN prototype (training)
disHrbutions ad can be defined by positive definite qadrc forms. For example, the regions are
defind by conic sections in the bivauiaft cas (two m a ) The cl ification region
for a particular class might be the inkrior of an ellipse or the region between two hypebotaLt In
general, a quadratic function will define the regions however, it is not ncessarily a positive

7 RIkbui A. hobuua, Dom W. WkWM, Appitd Ma&Mwiw Sca.io 2W4 10I~ R**lewaai Ouk .NJPiMMUM
HS. 190S. p 493 m• p13.

9T. W. Auiuuuos An Iwa~ca* to Mute'im $ SomaI Aamp*. b2V*il N~ew YA.L MY. hke Wile & so
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APPROACH

definite quadratic form. In this case, the Bayes classifier as defined is no longer optimal since the
model is only an approximation.

Poor performance can result from difficulties in estimating class covariance matrices. Such
difficulties can result from either insufficient variation in a sample (attributable to lack of feaum
variation and/or quantization effects) or inappropriately high variation (anributa&e to non-
homogeneous samples and/or outliers). This issue is discussed further in Swtion 2-212.

However, a major contributor to poor performance is mixed pixels compised of man m ha
feature. If a mixture comprised mostly of a predominant material is used as a u wmqk,
MVN assumption is almost certainly violated. The covariance esimae fot the pnkwmum a daM
will also be too high and therefore may give the class disvibt too bhgb a qv d (WWe Li
classes should have low variance/covariance to reduce the ovedW beem dimmý U aw wunh
data are constrained to pure pixels, mixtures in the remaining mop dm cm skaa s
corresponding pixel vector intensities toward the Wrong ciam me~uin -

If the classes of interest are well separated, violation of the I4VN aa a tomm9y &w
generate poor performance, so long as the di rbutks m *a. w Ti nm,, -uoAPn
seems to be mixed pixels.

2.1. Mafha.lmmehds D•zaaee Ckssi-,ud

The Mahalanobis distance clamfin i uinta tyaik am, UAW ows.,
making the decisio based on the Fp hocvW. a 6vs,4 aum es u M
distanc for the pixel of co u ran d w,, of dw pi~k ,, cumm twaoft as 60.pnw,
method, it is a quadratic clastsir. The .wuma tUK * o awow t*,•.uam e Mwkuisw4t
distance:

As with the minunmw~ Em~ac im. dwaft-. awfte Ow ftna**tab ok (5, '4'1pew&.a to m* wmonw
squaed MaalO60 diWstAnce•M iýtta Ahbw sofe O•ha. i.. s .s t. no *
quadatic BayIu w.

send on 0 MWWWWWmi MOMWe MNalwosfkt tot *0 footm 40*6 ýk *W .W*0- of , 0*0r

N1blEbdwi8Uc#11*t O~W41WS4P,). "0 *11* # 41M '*ii ~t~*0009"~ WW0OW$ Ph

the qertVV 00r (9 ) ~*F -!4t,1,"O ,wo --W WVW gon,' 9 WA# .. i-W '
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"APPROACH

2.2 Basic Issues

There are three basic issues that need to be addressed regarding techniques to extract natural and
manmade materials from broad-band imagery: the optimal selection of training dass, improving
the performance of conventional algorithms, and handling mixtures of materials.

2-1 OMtmWl Seleetdmn of Trmiine' Chna a

The three supervised methods require training daft to define prootpe classes. It is quite
conceivable that the performance of these classifiers will vary sigficatly, depending on the skill
of an analyst to define appropriate prototype classes. Not only must such train classes be
spectrally separable from each other, they must be representative of the features in the rest of the
scene. There are the issues of whether to choose a large or small number of classes, to choose
tightly or loosely defined classes (in a spectral variance sense), as well as to include or exclude
mixtures of materials in samples. For example, given that one of the class categories of interest is
grass, do we define a number of tightly defined grass prototype dsses with a small variance (that
we will later on consolidate into a single grass category after the classifier is finished) or do we
combine all the grass samples into one grass prototype class that will exhibit a larger (perhaps very
large) variance? As another example, given t-at the .cl of concernmis swmp-, do we define a
number of swamp prototype classes (representing various mixture ratios of water and vegetation)
or do we exclude this category and later on apply a mixed-pixel algorithm to the rejected pixels?

Optimal selection of class prototypes would seem critical to achwvig optimal results from a
supervised classifier. However, from an operational point of view, a key concern is whether it is
possible for an analyst to identify the prototype classes needed in a timely manner, without too
much difficulty, and without requiring an unusual amount of skill. Therefore, it is important to
simulate varying degrees of operator skill and/or effort, investigating the consistency of
performance results.

In most situations, an analyst will likely find it difficult to define all at once a complete set of
prototype classes that is truly representative of a scene. There are two primary reasons for this
difficulty. The first reason is that the analyst is unlikely (except in the case of very simple scenes)
to be aware of all the natural and manmade features that exist within the scene, and even if the
analyst was aware, a complete set of good samples are often difficult to find. The second reason is
that a scene will seldom be a clean display of perfectly homogeneous and spectrally well-separated
materials. Certain natural and manmade features are mixtures of materials.

"This predicament strongly suggests the need for an iterative methodology. As the classifier
processes data within a scene and encounters pixels that do not correspond to one of the prototype
classes, it should have the ability to reject them. Rejected pixels could be subsequently processed
in a number of alternative ways. In a most simple manner, the rejected pixels could be processed
in another pass; whereby, new classes are added to the prior set of prototypes classes and such a
new set of class prototypes used as the training model. Alternatively, the rejected pixels (now
represnting a relatively small portion of the original scene) could be clustered. More sophisticated
processing could consider the rejected pixels as candidates for mixtures of the class prototypes.

As part of the optimal selection process, outlier pixels should be removed from training samples (if
they are present) before the covariance matrices are computed and input to the training model.
Outliers can occur, for example, when an operator mistakenly crops the boundary of a training area
to include part of another feature, or perhaps a few scattered single pixels are located within an
otherwise homogeneous area. The presence of only one to three outliers can seriously degrade the

12
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estimate of the covarianc parameters of the model. This issue is discussed further in the nez
section.

Another issu similar to outliers is the situation where a triing set actually conau 0( two Of
thre spectrally well-defined materials. Perhaps it is impossible for an alyst io physkcaly draw a
boundary between such materials of interest because the pixels are intamnixed. If is W"~y
knows the area consists of a certain (small) number of materials, a simple dorn 4I ,A
(such as KMEANS) should be able to Sort the pixels and form the Wpqrpriat nawlbu of
homogeneous training areas.

2.2- 1 1nMving Perfbrmant WfCaatnaIAmd~

On a number of occasions prior to and during this effort, the InvOOStigusbo hae .puismad
W oranceprobemswith the esyianann Mahalaobis Clasuifiers with regard to afti
thm.For example, these classifiers almost always have a higher70 ~r ase for WOO i" dms

the far less sophisticated Euclidean minimum distance classifier. Also, astunMm is LAS safwwm
used at TEC gene-rates non-fatal (but alarming ) error messages regarding die pos ungidW"
of some class covariance matrices.

The problem is addressed by aftnrbuti ng this difficulty to dgnat asoe msbm. .nw~va
fro isufiiet aratonina amle(a-ttributable to lack Mffatevit O W a~xj

effects) and proposing that all dls oarac atrce be f l'ored ove a oe
variance. In particular, it can be observedA that water doeses oh~m have Inviu Im *maw.
With such a small variance, the covariance factor in the dhlifei~s ",-Ia fico =m
the algorithm to form a sort of impenetrable barrier that camus myq kgIs m wamapad
are only a distance of 2-3 gray shade values from the ----neu of is wi din -ass wea
be assigned to some other class that may actually be a itaeof 2D.4O Vvy d avain pat
component.

Improvements to the performance of the quadratic classifies cm also be so& by sesa ud
pixels from training samples (if they are present) before is wovarimo nwix mae
input to the training model. Although the estimates of amavm n w arn so *OTa 1'&~ 0
by a few outliers, the presence of outliers in a trinin sa-Il - -rlInd n s .
estimates. Samples with only a very few outlierssa 2 to 3 Fp" 0 will gsM7 Oww"NOW Ow
underlying parent opulations; particularly if the o='e munple we from a m- w I a wpm
signature quite dferent from the mateiaointerest. Fior ==zkasqi, Lmwis 7b"mc
Mapper data, 3 pixels of vegetation embedded in a usmipl of 160 w'M I p aui wo m w$
increase the estimates of the population covariance matrixM bii l"v~ t5
(644 O45, a55, etc.). This outlier effect is easy So show, for exape. by -otem n a m~ a V k
spreadsheet program and computing the variances for a inampl of abw 100 pisanKwbm
without a couple of outliers. The removal of obvious oudiem, if isy ompwa va ,
of the training data, should be aimple to automate.

The most challenging problem is to find a mechanism fixboriewo m
and identifying the elements and -- -PNtmW 6m01-is-in of"O W m
scene consists of pure pixels of and GcraVf W.M W40 1 in ~sem 211 IMA
2.2.2, most conventional al itiun, incluin ssmpetwI r uum
once mixtures of materials (ifmpure pixels) are introduc4d i difo dno Zis
many fold.

13
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DESCRIION OF EXPERIEMNT

During the course of this effort, all five dates of Landsat TM imagery were used. Initial trials
focused on the May 1987 image. Once the behavior of the algorithms for this single date was
established, the investigation proceeded to the remaining four dates.

Trials were conducted using a combination of training, test, and ground truth data extracted from
the montage image set. During some trials, the actual montage image was classified and numerical
accuracy assessed by comparing to a ground truth mask usin the LAS system. During other
trials, numerical accuracy was accessed by classifying the training data (autoclassification) test
data, and ground truth data, which were extracted from the montage images using TEC-developed
software on a microcomputer. Any data labeled as ground truth was verified by a personal site
visit to the area.

Perhaps the easiest way to understand how this combination of data was used is to consider that all
these data (training, test, and ground truth) were derived from a single large pool of data, into
which the investigators placed their specific datasets. At various times during the effort,
investigators extracted samples from the montage images with some knowledge of each site known
through personal experience, analysis of the high resolution aerial photographs, map information,
or personal site visit. Rather than give a historical chronicle of the training, test, and ground truth
site extractions and of how the experiments were performed, we organized the description and
results of the experiment by theme.

Some of the samples represent sites extracted with a high degree of skill or knowledge (sometimes
with collateral high resolution photography), whereas others represent sites extracted with less skill
or knowledge. Any of these sites would be valid candidates for training data and allow the testing
of algorithms on highly skilled versus less-skilled site selection. The sites collected with a high
degree of knowledge/skill would be valid for training or test data, whereas pound truth data

(although sometime located by aerial photographs) were verified by site visit.

3.2 Training, Test, and Ground Truth Selection

As just discussed, the training and test data were extracted from a large pool of data that can be
grouped into numerous candidate classes/sites. Each site (over 300 available in this pool)
corresponds to a georaphic site. The largest number of sites are defined by a LAS statistics file
called MOSAIC.SATS that contains a collection of 296 sites. The sites were extracted, later
examined by graphical and statistical analysis, and categorized into a smaller number of classes.
Various descendents of the MOSAIC.STATS file were generated, result in statistics files with
as many as 99 classes and as few as 10 classes. These files, along with a few other class/sites
defined by another investigator in another filo, comprise the pool of source data from which
training and test sites are extracted and defined.

No sane person would attempt to use this particular method of site selection in a production
environment. However, for the purpose of this study where we attempt a general characterization
of the algorithms and test for robustness, this approach is really essential. Some scatter diagrams
and graphs of spectral signatures are shown in Section 4.1 (Figures 3 to 11). In addition to
portraying the layout of certain prototype classes in spectral space and indicating their separability,
these figures also raise the concern of whether to include a small or large number of training sites
and would seem to suggest that a rigorous analysis of a large set of prototypes is warranted.
However, keep in mind that the ultimate intention is to define the simplest method for extracting
training sites without compromising the classifier's accuracy.
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As mentioned before, an attempt is made at di m. ... S46*
defined by varying degrees of rigor. A numerical sIeme Fw; e d m vi to A w 9 0
Classes I to 13 were selected quickly, based simply on knowledp of ab aftb ot+-
appearance of the site in the multispectral scene. They am no wt of #d W-16. 10 * A 4r-w
was rigorously analyzed. Of these, classes 1 to 8 are spectrally do* W U""

classes that represent materials as opposed to cartographic feamsm. .IM s A* *.*
that reside in the large class statistics file MOSAIC.SAT. Oanm vow # wi m it .
ground truth sites verified by high-resolution photography and saw vw

The pool of data was used to construct four data sets called Doom A. Dam% Ilt UA00• - 4w
Dataset GT. During the course of the experiments, Datas A was mod a a wow* ON"
Dataset B and Dataset C were used either as training data or N m dIe uambW to ft wo
Dataset GT was defined as ground truth and used exclusively as ashmL . ta lab ts
discussion below, the use of various combinations of these daums wO te &tm, a
Section 3.4.

Dataset A consists of nine classes that were given three diflm pe u.sa m Swff #0 o .
the experiments. These permutations are given the names Doom Al. Ckmw A.ý. Ov ýAbftb*-
and are listed in Table 3-1. As mentioned, these datasets were iind esobuw a "o"s-
The purpose of this dataset is to test the performance of the cldmifdh ON imuomw .i
kept to a minimum, and the selection is made to represent specally Im AINMOV 4100
represent materials (rather than cartographic features such as rs w wm
fields, etc). The working hypothesis is that the objects within a tm' (4ft $£ u
are actually composed of a small variety of spectrally-Mniqe w matt aw li to b -
spectral variation is due to mixtures of material& Although at fire qWMd "w N s-
perhaps a large variation of fine spectral detail within the vom m - a* %'W amgo., w ,b
level of classification needed, these variations can be ignoud

Dataset B consists of 26 classes that were given two penrnmmW lb ft 'u• MM f
experiments. These permutations are given the names Dataw BI ead Daww , o nsi wo
Tables 3-2 and 3-3. Dataset B1 contains 20 classes and wa voi as wm ** ,• m
contains these same 20 classes (Classes 100-194) plus • n additm *a a w.o tm. w * ..
however, note the data from these classes were sampled so " so d am awro ,m.• o oit o
samples. A somewhat different working hypothesis (from that mw so Aj am. s.
classes correspond to cartographic features that may or may nm be pow whk r U 0
this dataset were sometimes used for training and sometimes es a * o i *ON
classes were also used to study the statistical properties of stom of Oln d diwnewus..

Dataset C contains 25 classes and was used as a source for mm of lb psdmLt o, -• ,,
mixture analysis. The original intention was to use then cs ad mo wm OWv0 .f 0 -,'
test data for further classification runs; however, the study wm bt , im u wmo m &4w o #
decided to halt the classification trials in favor of performing fth *oa v a 0 W.
of these classes is listed in Table 3-4. For the most parxn dm wmn A* Ob,,ak,,6,
number of) geographic sites extracted from within the broawd doim, aukm a

Dataset GT contains eight classes and was used as test data for im f l, Ow a s o .
given in Table 3-5.

Appendix A provides supporting statistical data for the trias to & soq l iuiib* #,
list the mean vectors for the classes in Datasets A and B; Table A 7 hm l .m
the classes in Dataset A; and Table A8 lists the correlation arn kw Ow A ;*pow*

19



Tabl 3-1 Om. is Demts Al. A2, A3

Class me.. fe some

2 5& Rodt 9*0 Mmawsaf 3
3 m Ves *Ii- m 1Wvwww
4 C. Voo caau V"Pw
S -~ft DA -mp 1m La
6 coWo *-m mmA0 AmSE
7 WW2Da bWo

I Ww I L40 Moww
2 L. NoW WA shm~ t
3 D. Vv* -msr I- a"
4 C- v enmo
S q VW -fm OUeS" LO

4 Cemsx Cmu bom *a-m a
7 W4W2 *a w*a
120 QwA mAmp

a am# ft~W~&"

1 aba *oleo owbt
D7 Uf mw b omU

113 -N& am" *WNq0 a" c4u

* CininMu



tus am Lmn •t a A.mme w

-4$0 tfto -*NoD

oWS - *Uo -$% mow*

844 *0'. ,qD~jfl•flfl

.4M 4 A oftoo 4 k4 4W

%tw Qm•o " •4" 4

'S • ii fl 4m ••,u•e•



'4fl� 4 CUe 4 '�a flW�' t�

4�-� W� wr"

*

y

*

* �" 400¶' ww-ntu '*

,#

*�

� 0'
%itt

1

� t4 n 4

a -,
4
6* #f -A "S

'ft
*

41 at � ,�

t �Sj�6�

4$ a

*¶� *;A �i

,4 *v��d

�4 * me

t, fl-i *�

It �W'� i.�' $4
,�

4 40k 'Vt
0 a *',"-., '4 �I.

-� It' t..
a s I,"' * 1k a.

Ok



mfls�a

' * m

hEW't �9 *�

-s

�'�4h# *4 �ii*

*

&-*s 4 r�

4 4 �

44

4

tv t¶- 9

*4 Vt
- � tZ�.

&

'a

tuft * *3tw#i

* 44

"4*

4



wawm awam a0 Ow *A ben~ afad

a.44f 4"of 4woo 4aS qi
AWN� ~ ~ ~ r0M-I ab moo& "a

*7A~ ~ ~ ~ n6 4ao "Oo*o s 1dOO4
ýj -W cW *46,000- qW bWM lAbSd m

-KWWO -'44Ws. aio *e& ~ttý* Sf M Wt,6~ t Mt
4ScStan W itu

4* Tow~ "ORl C*)fff 0 S' wo qSU, fl4* a .wt *ab* o t~ bt Thi
a0 ebwm aaa.r naa a onat lit* moom*

~ ~ f 4 ow ft~ 4 S4WW tfluw

~r a ft ~w a a. ma bo taw asuiss

a u V 0 ~ e ill 0mn. quo*.naa w

A~ * aa

0~, '"m

*$o *WWAW ýV 0"4A~ *%."o "*aV ol~So *a St



DIEICRIEPON OF KINRIMNT

3-S 1Um MWES Truk~

TIh mi s mmysis wm wod at swamps, which can presumably be modeled as
a ed wpmms pu w .nTe vrials address two quesidon

(1) b b pow" a n am .tham wow r. vgpiadon can be used toSANpW* soi" mow•

CZ) b is M aID d S 6s ,ti of veuma (e. graim, dcld~mus urea,
amdww w) *al is ip a isd iWIlwe?

C- t w a queasu is the issue of nonunique solutions, which is explored in detail.

Tm a -pk so s•mae4 the linear mixin model. Tiese were extracted from Dataset B2,
ad C, s mide kledfi s follows-

Jh Makdal
C174 Swam
C75 Swaup
076 Swaup
C123 Gri
C125 Gm
C133 L3f
B140 Pine
B160 ARAM RW
0162 COMM
5190 WSW

T.inpsm C174. C175, C176, an the materials assumed to be mixtures of water and some
. rema Te emining materials are tested as possible endmembers.

TNs,,ed on approach that begins with combinations of candidate
exs--nds the model to include additional endmembers only if the best pairwise

mom is hadequa. Prior to this, trials that considered full regression model combinations of
ais to I= e huemen- were tested, and a standard method of model reduction was attempted.
I1s -d ppm seaned to offer no advantage over the approach that begins with pairwise
mdsins i aatm and had a number of disadvantages, including too few degrees of
besdm foS the fe" sum of u the possibility of negative coefficients (implying a

p mow or the worres ongm material), and problems of imposing the physical constraints
mm a im Section 2.1.5.

T. a" b%= with determining the domain limits defined by each of the pairs of endmembers.
"Thm ,, Uis mom necessarily be considered approximate because sample mean vectors for each of

eadmembher wet used n the definition, and since each sample is a cloud of data, there are
I Io I indvida eadmembers in each sample that would increase the width of the

•WWO eVa. A better method of defining the interval would perhaps be to choose the
eztrmsm o( the data cloud, so long as these extremums were not outliers. However, this would
hwe in rsP-ed the complexity of implementing the trials beyond what could be allocated to the

aeffbrt Such a method should be tested in the future.
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DZSClUITON OVW X iW

The doma•in•rval limits were used to assign a degree of (DO ith thefirst
physical constraint to restrict the allowable e mb combinations. Regression models are then
c d with diagnostic staistics for each of the pairwise endmemtbr combinations. An F-ratio
is used to asms the t i of a model. If now of the candidate eadmember pairs
had produced a statistically significant model, then the model would have been expanded to include
additional edmmbe (up to a 4-component model).

Th selecti pMcess employed four criteria: (1) suitable endmember combinations need to have a
high DOC with the first constraint; (2) large F-ratio models were considered superior to smaller
ones in a stisticel sense; (3) the model needed to be physically relevant by passing the second
constraint that all model coeffiients were positive and sum to approximately the value of one, as
mentioned in Section 2.1.5; (4) each and every residual must be small.

Results are discussed in Section 4.7.
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4.0 DISCUSSION OF RESULTS
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DISCUSSION OF GRAPHICAL RESULTS

250.00 -
OT46 Ground truth - Swamp consisting of water, tram attails off the Potmac River.
C174 Dataset C - Swamp 2A located mar Aberdeen Proving Ground.
C175 Datat C - Swamp_2B located in DeiMaVa Peninsula.
C176 Dataut C - Swamp_4 located in DelMarVa Peninsula.
C178 Dataset C - Swamp.8 located near Pauxent.
C179 Dataset C - Swamp_9 located off Choptank River.

200.00 .........................................................

1 5 0 .0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0`146

C179

50.00 -------------- ----------

C174

0.00

E1 B2 B3 B4 B5 B7

Figure 7. Spectral Signatures of Swamp Sites MY85

Figure 7 shows the mean spectral curves for six MY85 swamp sites. Unlike the previous graphs
for deciduous and pine sites, the curves of these sites do not follow the same trend. This is
particularly true for the spectral region represented by bands B3 to B5. Not only is there a large
variation in the intensity variations of bands B4 and B5, but there are significant variations in the
slopes of the curves between B3 to B5.

These variations are indicative of different mixing proportions in water and vegetation (along with
perhaps different species of vegetation) that compose the swamp sites. Although Swamps C174,
C175 and C176 occupy a separate region of spectral space from the other classes considered,
others do not. Note the overlap between the GT46 swamp and deciduous trees (Figure 5), the
C178 swamp and deciduous trees (Figure 5), and the overlap between the C179 swamp and
coniferous trees (Figure 6).
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250.00 -
C174 Dataset C - Swamp_2A located near Aberde• n Plovial;
C175 Dataset C - Swamp 2B located in DelMarVa Pelimia.
C176 Dataset C - Swamp..4 located in DelMarVa Pmiml.
C178 Dataset C - Swamp.8 located near PatuwtK
C179 Dataset C - Swampy9 located off Choptak Rhwi.

200.00-----------------------------------------------

150.00

100.00

50.00

0.00 I I .• ----

BI B2 B3 84

Figure 8. Spectral Signatures of Swee %V** Cw,

Figure 8 shows the mean spectral curves in October 1985 fat frov *'4 6o wow",•W 4. f..... -W
not available) displayed in Figure 7. In addition to showing Ow 1W.kr"o, #€ fp 40 O.,
season, the responses in October (particularly in B4) can be eed to afwawm,. ** - -" , -

different ground feature from coniferous trees, and C178 is a &fhmv, V-se stIt, #,.,,
deciduous trees. For example, observe the following diffetrac,.

MYSS II III I1 5t I84 6"
Swamp-C179 92.88 33.81 335 to ; 4 .1 ,

PINE 93.92 35.14 31 65 of # 4 .

QF.iI 1.1 12 32 11i SIt
Swamp-C179 66.46 24.13 29 if oE f ' -

PINE 61.46 22.06 203i of 9 #' ,
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DISCUSSION OF CLASSIFICATION RESULTS

4.2 Methods to Assess Classification Accuracy

The results of the classification runs were initially assembled into contingency tables that show the
results in detail (see Appendix B). Each row of the table corresponds to a test class, and the
columns list the number of samples placed into each of the prototype classes.

The contingency table results are summarized by tables in this section, which list omission and
commission errors. Each type of error takes a different view of the results. Omission error is
from the viewpoint of the test (ground truth) data. Given a group of test (ground truth) data, how
many samples did the classifier mislabel as something else? For example, if there are 100 water
samples in the test data and 5 of the samples were misclassified, the omission error would be 5
percent. Commission error is from the viewpoint of the resulting class map. Given that the
classifier labeled a certain number of samples as a particular category, how many of these samples
correspond to something else? This error gives the false alarm rate. For example, if the classifier
labeled 100 samples as water and 2 of the samples were actually something else (according to the
test data or ground truth), the commission error and the false alarm rate for this category would be
2 percent.

Although the groupings of test data remain a constant for all the various classification trials, the
groupings of the class map data are not constant. Therefore, comparing omission error results as
percentages is a reasonable thing to do; however, comparing commission error results as
percentages can be misleading. In comparing two trials, the percentage of commission errors
could conceivably increase, even though the absolute number of commission errors decreases
dramatically. This is discussed further in Section 4.3, where this situation occurs during Trial 3.

In comparing the class names for training sites with those of the test site, one quickly notices that
there is not always a one-to-one correspondence. For example, the test class Mall does not
correspond to any of the training classes in Datasets A1-A3. However, for our purpose, we could
consider the classifier to be correct if it labeled such pixels as either asphalt or concrete since it is
quite conceivable that a shopping mall would be an aggregate of asphalt and concrete materials.

In order to conduct a quantitative analysis, some kind of equivalence musted be established
between the classes in the training sets and those in the test sets. Of course, in the case of auto-
classification, such a correspondence is automatic, and in some test classes the correspondence is
immediately obvious.

Tables 4-1 and 4-2 define the equivalence between training and test classes that are used to
summarize the omission and commission results as presented in the following section. The
omission and commission results are computed from the contingency tables listed in Appendix B
(Refer to this appendix for a detailed look at the classification results).
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DISCUSSION OF CL4AssIJicATON RESULTS

Table 4-1 Chas Equivalence Sets for Omission Errors for Trials 1-4

CoAstruction a (AsphWI
TBC Sit. a (Aspalt, Coacrete)
Parklandi1- (D. Veg)
High School - (Asphlt Caicrdete
Mail (Asphal Concrete)
Parkland 2 * (Gras-A, Grass-B)
sermson * {Qurele)
Fields-A -(Otis-A, Gras-B)1
Fields-C -(Grass-A, Otis-B)
fleldo-D ( {Oass-A, ONUss-B)
Otis-A (Grass-A, Otis-B3)
Gras-B - (Gras-A, Grasa-B)
Gruas-CM -Grass-AGras-B)
Led=. {D. Veg)
Pine-a (C. VC8 )
Road-A- (A*Mal)
Runway-C - (Asphialt)
Runway-F - (Concrele)
Swamp-A a (Water 1, D. V%& C. Veg, Water 2, Grass-A, Grass-B)
Swamp-B a (Water 1, D. Veg, C. Veg. Water 2, Grass-A, Grass-B)1
Urban-D = f(B. Root~ Asphalt, Concrete)
Uiban-F = (B3. Root; Asphalt, Concrete)
Urban-I 0 (B. Root Asphalt, Concrete)
Water-Al = (Water 1, Water 2)
Water-A2 = (Water 1, Water 2)
Water-C- (Water 1, Water 21

Table 4.2 Class Equivalence Sets for Commission Errors for Trials 1-4

Water 1 - (Water Al, Water AZ Water C, Swamp-A, Swamp-B)
B.Roof - f-)
D. Veg = (Parkland 1, Leaf)
a Veg.- (Pine)
Asphalt a (Construction, TEC Site, High School, Mall, Road-A, Runway C, Urban-D, Urban F, Urban 1)
Concrete =(TEC Site, High School, Mall, BareSoil, Runway F, Urban-D, Urban F, Urban I)
Water 2 - (Water Al, Water A2, Water C, Swamp-A, Swamip-B)
Grass-A - (Parkland 2, Field-A, Fields-C, Fields-D), Grass-B, Grass,-C)
Grass-B (Parkland 2, Field-A, Fields-C, Fields-D), Grass-A, Grass-C)
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LW-•CMION OF CLASSIFICATION RESULTS

it erma mow wapwa asm dhW ftyu inkimal opcoved the results of the standard Bayes
.amhw• rh pitem a a s mson Imw wowr cames disappeared and the errors for the,,m.mm ,,mm *em -mm mtn

ONWmAi •M,,PO lo &%M to.tm 0w% IlMM n.• 6A Imasa [$Jfl 16~ m O.COk am~o.
*MML 4PWW L' IJ -W 40 V OAM alix.

*mmt, A usp w e *&M MW i n 1510 amn.

Or Amok es liwwi*A d4am *on amcuiy clsfled as swamp because there were no
* V sJ V"WW •4m.. 1TUY wen dasAfiud as som ty of water or vegetation (see the

a ewv tmom i A.Fum J S d Tiba 4-1 to 4-2 hiting cls equiven sets).

M" wwnww4 # amsw Gaw of dw v standard Bayes algorithm. Reference the
I *uWIIg "Nuft od ind a T"bl 54 (A' •m&,) of A Band notice that a Mrge number
S. ~•~ W ad "Wi amp were IabeW as asphalt. By invoking
a* etagew iuus *n ail of to ww mamples were labeled correctly, and the number of

wimp a inb.fiW . uephlak was muced hom 446 to 102.

th4 MOMW U" m mWo the coId ow rmsults, or false alarms, corresponding

Am Ww dwm d bow 481 iop6m " o 139 sampkL.

tu ba. dAWM.e %W "MM610" v9vuum im , from 134 samples to 203 samples; however,
Sp * e i a qaci the oitingency results in Appendix B, Table

00 (*W ad w, Mo*w 00 1 ID ow ad *M • 3 mples belong to the test datasets swamp class.
M , a M Ow WMik *AMw w so uamia•a claw. ivn that mwamp can be defined as a
*&*N 4 WP s am wosw md *1 bar we hav no invoked a rejection criterion, this

wmpas 4 f w ooti m ID coad s vpe o can easily be considered correct. Of
,i e, Ito agmemw orkok bus tectw cnts we tesed, we should expect to see such false

%wo o mommmu 0wwwae tm6wld vahm wete tsued that ranged from 1.0 up to 25.0 (only a
**,w of *V w, t Ow •,•at md Mi&Vw,3 on other cldns is shown). The best results were

o b b ** v sm Oia• A bqu vaw for wae increased the errors for other classes,
*boom * *malis vvbe mcnad dw moni fm the swamp class.

w. hwil 4 no" dan t scmtUly kntaional for this trial. Other trials include this
PlUA ts"Wp"It. om o' at wbdu o identify swamps using numerous training classes or

a * e*.m qynwh am tb esaord. UsWag the traing clas approach, many training
Sqwum4W we IWty vo be me ded (W a saree because of the large variations of possible
mn*uw. ( *.& - wow ad 2M0% wtan 50% water and 50% vegetation; 20% water and

ft) #**tokiK X•.), s to imuaaa doe vaveou possibe species of vegetation.

ift * 4% r his ssm ptd,- o -k strteywould be to classify swamps as either water or
VIP101- iwu whi tb wau&m to mjw by sh cig-squared threshold. In rejecting the classification,
% ". I " to 6 smples wert rejected as a water or a vegetation classes, they could
NowArd W *"s k molwpial aemlyms. Subsequent analysis would then recognize the

dw swmp is a wm n of wae and vegetation. However, if the samples were rejected,
*0 "emembee a s a ,npalk. ftas 1"o would fail.
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DI[SCUSSION OF CLASSIFCATION RESULTS

Table 4-5 Auto-Classiftcatdon Errors for Trial 3

This table lists the percentage of error In classifyin the prototypes within each of the classs in the training set
A3, using the Modified and Standard Bayes dlacrlmlnaaz the Mahialanobis distance; and the Euclidean distance
methods.

PROTOTYPE Modified Standard Mahalanobis Euclidean
Bayin Bayes

Water 1 0.00% 0.00% 0.00% 0.00%
B. Roof 0.00% 0.00% 0.00% 0.00%
D. Veg 0.00% 0.00% 0.00% 0.00%
C. Vag 0.00% 0.00% 0.00% 0.00%
Asphalt 0.00% 0.00% 0.00% 0.00%
Concrete 0.00% 0.00% 0.00% 0.00%
Water 2 0.00% 0.00% 0.00% 0.00%
Grass-fl 0.00% 0.00% 0.00% 4.17%

Table 4-6 Commission Errors for Trial 3

This table lists the commission errors in classifying the test data tes Set M2 using the Modified and Standard
Bayes discriminant; the Mahalanobis distance; and the Euclidean distance methods. Training Set A3 was used to
train the classifier. The modified Bayes was run using minVar =16 for the water dasses and minVar =3 for all other
classes. The commission errors were computed using the clas equivalence met for commission crimes listed in
Table 4-2 and the contingency results listed in Table B4 of Appendix B. Both percentages and actual numbers of
errors are given.

PROTOTYPE Modified Standard Mahalanobis Euclidean
Bayes Bayes

Water 1 0.00% 0.00% 0.00% 0.00%
D. Roof ... - -

D. Vag 22.74% 21.98% 2133% 24.78%
C. Ye3  34.64% 26.17% 23.73% 52.82%
Asphalt 19.83% 54.74% 55.67% 48.50%
Concrete 66.71% 67.00% 67.09% 45.43%
Water 2 0.00% 0.00% 0.00% 0.00%
Grass-B 29.48% 31.67% 34.10% 20.29%

PROTOTYPE Modified Standard Mahalanobis Euclidean
Bayes Bayes

Wateri1 0 0 0 0
B. Roof ... - -

D, Vag 266 244 224 311
C. Vag 203 134 117 440
Asphalt 139 681 707 599
Concrete S23 530 532 159
Water 2 0 0 0 0
Grass-B 263 298 343 97
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Table 4-7 Omission Em..n for TtW6 3

Ills table lists the omission error in classifying the It daisw 1.' 32 am so saws. 4M 640040 oft*
discriminant; the Mahalanobia distance; and ths Eudideas damw sati, ?imkam ^.t wW *@A 4' des. 4
classifier. Mb. modified Bayes was nan using ala Vag .16 Ow r an caa* me am. &*~ oo *& *~ 4w e
Mw. omission errors were computed using the 'cla .qivaleaca -g 6w awm aw'e £&m 80 %*1*.
the contingency results listed in Table B4 of Appendix D

TEST SFnE Nodi&d 91 dwi 11"heafta &iibW

Construction 2.94% 2.94% 1Z9f41so
TEC Site 3.85% 385% 3A5 ý tA
Parkland 1 0.00% CA a 4
High School 0.00% OAM QA 11
Mail 1.61% 1.61% I16)0-ý1
Parkland 2 0.00% 0.00%MI.
BareSoil 0.00% OAM *AM v- '
Fields-A 69.30% 61110% M*
Fields-C 68.32% 6S32% 11f It'r
Flelds-D 1.59% 0.94% cn I t
Grass-A 0.00% 0.0% &An#A
Grass-C 3.23% O.M SAM ft *ti
Leaf 15.60% 19A.M D.AM -of

pine 2.54% 3M2% 4L.VG ko
Road-A 18.76% Is-"% it.** &A
Runway-C 0.00% 0G0M GAP%
Runway-F 0.00% am0% *AM
Swamp-A 15.20% 46AM647% fa
Swamp-I #.00% UM0 ca S*f
Urbau-D 6.00% CAM Gan$^A
Urban-F 0.00% GAM GAP* 44
Urban-I 0.00% 0M &UP'S IPAM'
Water-Al 0.00% 161 ai -M
Water-A2 0.00% 2.0 do. %06S ,01t
Water-C 0.00% 11S:1% Woe t-f

The Fields-A and Fields-C sites generated fth highest omm* &Poin I1w v~ ovaw~
to be agricultural fields. Their spectral behavior and &s mat" V4 jr4wmwg I ewo
be understood by referring to Appendi*x A., whiclih l do mom Vwvs tv to #ý.^*sf a& t
May 85, August 85, October 85, adMarch 85.

Consider the mean spectra for Fields-A. Notkx &Wa for Os Man I 4w OWI te 000. t
as May 85, October 85, and March 85) the mmW upwcal W Oe.W #9 uwe OWk
the signature of vegetation, but rather it is doesw to Os a oof r~ 40p 4signature changes quite dramatically to one tho# is W~dmo oaf ewpw f
This is, of course, quite typical behavior for crops it aw v*P n~.so ito.
where the majority of the Fields-A samples *wet laedw comm v9 k~otoi (ONO -s~ $I*- 6
classifier used). In addition, apoimatey 20 ic 26 percm es 0o w.*t
deciduous trees (For furthler repfernxce, see T"b~ 184 eAwu.W
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DISCUSSION OF CLASSIFCATIION RESULTS

ToWl 4.11 Deja Oukalmem Rtesuts Using 5 Times the X2 Value - Trial 3
no mob li * pasa at .admifid md voedmifIed pdzls, " well as te tOWa percenhage
smimei, fe aA detoe w im 32 Im a tbmhodw value of 84.05, derived from fth ch4quae statistic

coostir..la. am0% 41 .18% 41.18%
TIC as 0A .00% 1000W0.00%
purbmn I 0.00 0&00% 0.00%
Nwsh 5cMI 0.0 96.43% 96.A3%
Idol# 0.00% 96.77% 96.77%
rwjm 2 0.00 14.49% 14.49%
ma,.soll 0.00 100.00% 100.00%
Vhld..A 2&40% 65.80m 92.20%
FkIeld-C 0.00% 100.00% 100.00%
FIumd.. 1.89% 0.00% 1.89%
Grose-A 0a"0 60.92% 60.92%
Gra.-C 3.23% 3.23% 6.45%
Lost 15.60% 0.00% 15.60%
Fleeo 153 1.27% 2.80%
Rood-A 1.80 65.47% 67.27%
Rumeway.C 0.00% 7.69% 7.69%
Rasw.ay.F 0.00% 27-68% 22.68%
Swomp-A 0.0% 57.08% 57.08%
swomp41 a-00% 50.00% 50.00%
Vr~.a.D Om00 62.96% 62.96%
IUrboo.F 0.00% 93.33% 93.33%
U446a.1 0.00 7.14% 7.14%
Wager-Al 0.00% 0.00% 0.00%
Wager-A) 0.00% 0.00% 0.00%
Wager-C 0CI0% 100.00% 100.00%

Puacnap of Mead vaciamified 7-2759%
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DISCUSSION OF CLASSIFICATION RESULTS

Table 4-12 Bayes Omission Results Using 7 Times the X2 Value - Trial 3

This table lists the percentage of midassifled and uncdasifled iuels, a well as th oa percentage
omitted, for each of the test sites in B2 for a threshold value of 117.67, derived frm the chi-square statistic
with 6 degrees of firedom.

d2 
' X2.0 1(6) 7

Construction 0.00% 17.65% 17.65%

TEC Site 0.00% 100.00% 100.00%
Parkland 1 0.00% 0.00% 0.00%

High School 0.00% 85.71% 85.71%
Mali 0.00% 87.10% 87.10%

Parkland 2 0.00% 1.45% 1.45%
BareSoil 0.00% 100.00% 100.009
Fields-A 31.10% 57.70% 88.80%
Fields-C 7.92% 92.08% 100.00%
Fields-D 1.89% 0.00% 1.89%
Grass-A 0.00% 39.08% 39.08%

Grass-C 3.23% 3.23% 6.45%
Leaf 15.60% 0.00% 15.60%

Pine 2.29% 0.25% 2.54%
Road-A 2.59% 54.09% 56.69%
Runway-C 0.00% 1.28% 1.28%
Runway-F 0.00% 13.40% 13.40%
Swamp-A 2.38% 36.96% 39.34%
Swamp-B 0.00% 8.33% 8.33%

Urban-D 0.00% 3.70% 3.70%
Urban-F 0.00% 86.67% 86.67%
Urban-I 0.00% 0.00% 0.00%
Water-Al 0.00% 0.00% 0.00%

Water-A2 0.00% 0.00% 0.00%
Water-C 0.00% 100.00% 100.00%

Percentage of test set unclassified = 21.91%
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DISCUSSMON OF CLASSJFJCATION RESULTS

45 Results of Trial 4

Trial 4 investigates the effect of reducing the number of bands, repeating the analysis that was done
on the modified Bayes approach in Trial 3 using the four Landsat TM bands B3, B4, B5, B7,
rather than all six bands. Notice that the chi-square distance threshold value changes because
degrees of freedom for the distribution change from six to four. However, for consistency they
were selected in the same manner. one times the chi-square distance, five times the chi-square
distance, and seven times the chi-square distance.

Table 4-13 shows the auto-classification results using only B3, B4, B5, and B7. The auto-
classification of 4 bands produced almost the same low error rate at x2.01(4) as that of 6 bands,
except that the Grass-B class contained 4.17 percent error (compared to 0.0% for 6 bands). The
results for the other chi-squared values were 0.00 percent for all classes (identical to the results
achieved for 6 bands.

Table 4-14 shows the commission results for these four bands. The same trend of decreasing
errors for decreasing thresholds is seen. Except for the lowest threshold value X2 .1(4) = 13.28, the
results are almost the same. For the lowest threshold, however, 81 errors occur for the Grass-B
class using 4 bands vs. 39 errors using 6 bands. Referencing the contingency table, the classifier
is calling 80 of these 81 errors Grass-B, when they should have been called D. Veg.

Based on these results, there would seem to be little impact to redu the bands. However, the
omission error results, listed in Tables 4-15 to 4-17, show some problems. As was the case for 6
bands, the trial for the lowest chi-squared threshold, while maintaining a low misclassification
error, resulted in mostly unclassified data. Proceeding to the next highest threshold of x)2.0(4) •
5 = 66.4, more of the data was classified. Unfortunately, a large number were i
Referring to the contingency results in Appendix B, some of the degradation in going fom 6 bands
to 4 bands (for this threshold) can be compared as follows:

CLASS &bgnd error 4Jalf errojr Maior esuse of Problem
TEC Site 0.00% 19.23% Samples being labeled as B. Roof
High School 0.00% 60.71% Samples being labeled as B. Roof
Mall 0.00% 62.90% Samples being labeled as B. Roof
BareSoil 0.00% 73.68% Samples being labeled as B. Roof
Fields-A 26.40% 54.50% Samples being labeled as B. Roof
Road-A 1.80% 33.53% Samples being labeled as B. Roof

Apparently, the reduction in the number of bands causes confusion between the samples containing
soil and/or concrete and are being confused with the Bright Roof class, that is believed (but no yet
confirmed) to be metal. There does not seem to be a problem in confusing vegetation; however,
mixtures of soil and vegetation such as Fields-A were also confused with this Bright Roof class.

Based on these results, the reduction of bands from 6 to 4 cannot be recommended. Further
reduction beyond 4 bands is highly discouraged.
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DISCUSSION OF CLASIFICATION RESULTS

4.6 Reus of Tr5tal

Mw obc& of this Utl was o investigate the behavior of the three well-known supervised
chmauifle - the Standad Bayes disacriminant, the Mahalanobis distance, and the minimum
Rihcidam di&co - on data a over different seasons and years. Because of the desire to
pmed wt &g the line xture modeling, the modified Bayes discriminant using a
munim vaem criterion and/or chi-squared threshold was not tested. The classifiers'

pedmmaa. wwa wsed agaios their own training data (auto-classification), and the ground truth
(nr) tI data etiatced from the imagery. Data from the five mosaic datasets were used: May
1967, May 1965, Augs 1985, October 1985, and March 1989. Therefore, the effect of different

emomm for the same year could be studied, as well as the effect of the same season for different
yewrs.

setta and dicussion of the auto-classification analysis are first presented, followed by results
and disceiuo of clasifkcatiom analysis on the ground truth data (GT). A description of the
mcsa data sots, and the tran set acquisition process and properties were discussed previously
in Secdow 3.1 and 3.2, respectively. Training statistics (mean vectors and covariance matrices)
arsead in Appendix A. More detailed results for the auto-classification runs are given in
Appendi C.

AmA a-Claulftmam A.-hsb of ýruixin. Armas - Set B2

Auaj-dcmific avimswere made on Training Set B2 to test the performance of the Bayesian,
Mhf~5laofl4, and Euclidean classifiers when applied to its own training data. These runs were
im ,d usumg daa from aU five mosaic images: May 1987, May 1985, August 1985, October
1965. and March 199. Training Set B2 consists of the 20 classes numbered 100-194, as shown
in Table 3-3 (Section 3.2). During this trial, classes 8-13 were not used.

The performance of these classifiers is summarized in Table 4-18. This table shows the
per of orrect hits for each class for all three methods and also the average of correct hits for

eh od % whe each class is weighted equally). Note that this summary consolidates the
eults of the training classes into 16 classes by combining the three fleld classes (Fields-A,

Field&-B, And Fields-C) into a class called Fields, and combining the three water classes (Water-
Al. Waler-AZ And Water-C) into a class called Water. Appendix C contains a table showing the
results without the consolidation.

Th results are mported with this consolidation because we did not want to penalize the classifiers
for confaion between similar classes that would eventually be consolidated by subsequent
operations. We could have similarly combined many of the others (such as road and runway);
howeve, the performance was so good it did not seem necessary, and in addition, the ability of the
clasifieks to maintain separability between such fine classes provides additional insight into their
behavior.

The Bayesian discriminant classifier proved to be the best of the three methods. The Bayesian
iesults were consistent across all five dates tested. The overall performance, as well as the
performances of all individual cases, was excellent. By consolidating only field classes and water
classes, the average percentages of error were 1.95%, 1.27%, 0.72%, 2.82% and 3.68%
for May 87, May 85, August 85, Oct 85, and March 89, respectively. The highest error for any
individual class occurred in the March 89 data for Leaf and had a value of 11.20 percent.
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DISCUSSION OF CLASSIFICATION RESlLTS

The second best classifier proved to be the Mahalanobis distance classifier. Generally, the
performance was very good, with most errors below 10.0 percent. The average percentages of
error were .35%, 2.81%, 0.96%, 4.83%, and 11.03% for the five dates. However, the
consistency between dates was not as good. For example, the Grass-B class maintained an error
rate of less than 10.0 percent for all dates except March 89, for which it increased to S0%. The
corresponding contingency table (not shown) reported that 41.67 % (10 out of 24 samples) of the
Grass-B samples were incorrectly labeled as Leaf. Two other relatively poor performers for this
March 1989 data were Grass-A at 21.84% and Grass-C at 32.26%; however, they are not as
bad as they seem. The Mahalanobis classifier (incorrectly) labeled 20.69% (18 out of 87) of the
Grass-A samples, and 32.26% ( 10 out of 31) as Fields-A. If the Grass-A and Fields-A were later
consolidated, the 87 Grass-A samples would have a 1.5% error rate. If the Grass-C and Fields-A
were later consolidated, the 31 Grass-C samples would have a 0.0% error rate.

Although not as good as the above two methods, the Euclidean distance classifier provided very
good results, although somewhat lower and less consistent. The average percentages of error were
13.20%, &19%, 4.64%, 14.S6%, and 21.59% for the five dates. Again consistency
among dates and individual cases was not as good as for the Bayesian method.

Table 4.18 Auto-ClassIficatlon Summary for Training Set B.

Field Classes Combined and Water Classes Combined
Training Data MY87_lOOOSamples Training Data MYSS_100OSamples

Bayes Mahalanobis Euclidean Bayes Mahalanobis Euclidean

Baresoli 0.00% 0.00% 0.00% 0.00% 0.00% 2.63%

Fields 8.70% 2.49% 63.88% 7.95% 2.65% 39.27%

Grass-A 2"30% 5.75% 2.30% 1.15% 12.64% 1.15%

Grass-B 0.00% 8"33% 16.67% 0.00% 0.00% 12.50%

Grass-C 0.00% 16.13% 16.13% 0.00% 3.23% 6.45%

Leaf 3.10% 27.30% 8.20% 1.30% 1.80% 6.50%

Pine 2.80% 8.14% 10.69% 2.80% 12.72% 17.56%

Road-A 8.38% 10.98% 30.34% 3.99% 6.99% 19.36%

Runway-C 5.13% 5.13% 5.13% 1.28% 1.28% 0.00%

Ranway-F 0.00% 0.00% 4.12% 0.00% 0.00% 0.00%

Swamp-A 0.45% 0.30% 30.40% 1.34% 3.13% 9.84%

Swamp-B 0.00% 0.00% 16.67% 0.00% 0.00% 8.33%

Urban-D 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Urban-F 0.00% 0.00% 6.67% 0.00% 0.00% 0.00%

Urban-I 0.00% 0.00% 0.00% 0.00% 0.00% 7.14%

Water 0.40% 0.99% 0.05% 0.50% 0.55% 0.35%

Average 1.95% $.35%_ 13.20% 1.27% 2.81%j 8.19%
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DISCUSSION OF MIXTURE ANALYSIS RESULTS
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Figure 13. Observed Spectra of Swamp and Candidate Endmembers

Table 4-21 lists the domain limits for some of the endmember combinations. In this table, the
mixture (Swamp C174) is placed in the middle of two endmembers. For the endmembers to be
completely compliant with the first physical constraint, the Swamp response must lie within the
interval defined by the endmember pair for all bands.

Table 4-22 lists the full regression results for one of the endmember models of Swamp C174.
Note that both a model with a constant term and without a constant term was generated. This
approach is used for all the various combinations. For each combination, the model with a
constant is generated. If the constant is found insignificant, it is dropped. For the model to be
physically appropriate this must indeed be true. As it turns out, the constant was found to be
insignificant in almost all the cases. The detailed regression results are listed in Appendix D.
Although only a few examples of the models with a constant are listed, they were indeed tested,
and the constants were found to be insignificant.

Regression models are computed with diagnostic statistics for each of the pairwise endmember
combinations. An F-ratio is used to assess the statistical significance of a model. If none of the
candidate endmember pairs had produced a statistically significant model, then the model would
have been expanded to include additional endmembers (up to a 4-component model). However, all
the trials produced statistically significant pairwise models.
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DISCUSSION OF MIXTURE ANALYSIS RESULTS

Table 4-21 Pafrwise Domain Limits Surrounding Swamp

MYXS Water Swamp Deciduous Comments on Domain Limits

B1 103.27 98.4 89.95

B2 37.91 35.439 33.884

B3 34.86 35.709 28.134 Slightly Outside Interval

B4 19 44.81 146.475

B5 13.72 37.624 77.442

B7 7.47 14.984 19.439

MY8S Water Swamp Concrete

El 103.27 98.4 180.42 Outside Interval

B2 37.91 35.439 94.74 Slightly Outside Interval

B3 34.86 35.709 136.23

N4 19 44.81 114.43

B5 13.72 37.624 182.9

B? 7.47 14.984 104.94

MYSS Water Swamp Grass

Bl 103.27 98.4 103.794 Outside Interval

B2 37.91 35.439 42.265 Slightly Outside Interval

B3 34.86 35.709 38.735

N4 19 44.81 149.794
B5 13.72 37.624 114.853

B7 7.47 14.984 36.'A8

MY8U Water Swamp Asphalt

B1 103.27 98.4 126.04 Outside Interval

B2 37.91 35.439 48.49 Slightly Outside Interval

B3 34.86 35.709 54.86

N4 19 44.81 39.62 Outside Interval

B5 13.72 37.624 52.12
B7 7.47 14.984 31.56

MY8S Asphalt Swamp Deciduous

E1 126.04 98.4 89.95

B2 48.49 35.439 33.884

B3 54.86 35.709 28.134

B4 39.62 44.81 146.475

B5 52.12 37.624 77.442 Significantly Outside Interval

B7 31.56 14.984 19.439 Outside Interval
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DISCUSSION OF MIXTURE ANALYSIS RESULTS

Table 4-22 Regression Results for One of the Endmember Models of Swamp

"kts Mbkle shows the regao. resuit and analysis of variance (ANOVA) utes fkr a Una Mod of Swmp C174 th is
campdad of a mixture of Leaf C133 ad Water B190. The am s maw aemerad/for a Honer mods both with ad widi s
cOnStant.

ME VlRs u Es 6 0ULTIPLE Is 0.990 SQUARED MULTILE RIt 0.901
ADJUSED SQUARED MULTIPLE ts 0.966 STANDARD ERROR OF STIzMATgs 5.027

VARZASLZ COEIRICIEUT 8TD ERROR STO Can TOLERAMCE T P(2 TAIL)

CONSTATI 5.993 4.123 0.000 . 1.454 0.242
Loaf C133 0.196 0.047 0.337 0.977 4.164 0.025
water a190 0.710 0.065 0.681 0.977 10.934 0.003

ANALYSIS OF VARIAIMC

SOURCE SUK-Ol-SQUARXS Dor XXA-SQUAR Vr-RATIO P

RUURSSION 3907.349 2 1953.674 717.-M 0.003
RSIDUAL 75.814 3 25.271

NODEL COITAINS no CONSTANT.

Dar VAR$ h us 6 MLTIPL sre 0.994 SQUARED LTIMLE as 0.992

ADJUSMTE SQUARED MULTIPLE as 0.990 STANDARD ER.0 OF E &TZINs S.464

VARIABLE COBYICIZIWT a" EOR 970D Con TOLXANM3 T IP(3 TAIL)

Loaf C133 0.241 0.040 0.372 0.542 6.066 0.04
water a1t0 0.753 0.065 0.706 0.542 11.S06 0. 06

ANALYSIS Or VARIANCE

SOURCE SM-OM-SQUARES Or NZUA-SQARE r-RArTIO P

REOMSION 15732.427 2 7664.214 Man 0.00
RESIDUAL 129.210 4 32.302
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CONCLUSIONS

5.0 CONCLUSIONS

5.1 Conclusions Regarding the Graphical Analysis

Th graphical analysis indicated a possible degeneracy in the spectral space defined by broad-band
srs (such as Landsat TM), where a mixture of materials could combine to form a

signature identical to the signature of certain pure pixels. In particular, coniferous and deciduous
trees were observed to lie in a region of spectral space occupied by certain mixtures of water and
vegetation (e.4. certain types of swamp). For such situations, no algorithm, regardless of its
compexity, will te such classes. The spectral information just simply doesn't exist to
distinguish them. This provides motivation for using narrow-band spectral imagery, consisting of
higher spectral resolution and more bands.

TMw addition of more spectral bands with increased spectral resolution, hopefully, can eliminate the
degenerate cases. However, there is no guarantee that this approach will be successful. The
underivn spectra might be quite bland and not contain distinguishing absorption features.
Therefore, incorporating such data, although more volumous, would not necessarily provide
increased spectral information.

5.2 Conclusions Regarding the Spectral Classification

Performance of the conventional classifiers as typically applied to Landsat TM is unacceptable for
the general application of extracting natural and manmade features. The most disturbing behavior
of the conventional Bayesian and Mahalanobis classifiers was the tendency to mislabel water and
marsh/swamp features in a scene as asphalt. This type of error has serious consequences to
military and environmental applications (e.g. A convoy of jeeps and trucks would prefer to stay on
the roads and not drive into a swamp). In this regard, the Euclidean classifier performed much
better.

The Euclidean minimum distance classifier performed better at not mislabeling water features.
However, it did not perform as well as the Bayesian or Mahalanobis classifier for many other
features.

In many cases, the problems found with the conventional classifiers were not due to a lack of
spectral separability between materials or a lack of spectral resolution. The problem was often one
(or a combination) of the following:

a. Correspondence between the objects of interest in a scene and the materials (the classifier is classifying
the materials, not the objects).

b. Correspondence between the samples in the scene and the available prototype classes because there is an
insufficient number of prototype classes.

c. Samples in the scene are mixtures of materials represented by the prototype classes.

d. Difficulties with covariance matrices modeling the spectral variance of certain classes, particularly,
water.
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CONCLUSIONS

The performance of the Bayesian and Mahalanobis classifier was improved to an acceptable level
by using a minimum variance criterion on class covariances and a chi-squared rejection criterion.

a. The use of a minimum variance criterion was shown to correct the problems associated with modeling
the spectral variance of water.

b. The use of a chi-squared rejection allowed samples that did not correspond to a prototype class or that
correspond to a mixture of classes to be rejected. The error rate was reduced dramatically, labeling as
unknown those samples that were previously misclassified.

c. The chi-squared rejection criterion, as sometimes implemented on other systems, is not acceptable.
Often times, there is the need to allow a larger rejection distance than what is available. The software
written during this effort allows the use of such larger rejection distances.

The chi-squared rejection criterion would be particularly useful for targeting applications. An
analyst could train on a specific ground feature of interest. By invoking a tight threshold distance,
the analyst would have a very high degree of confidence that any ground feature identified as the
target material was indeed classified correctly.

Reducing the number of Landsat TM bands from six to four, significantly increased both
commission and omission classification errors.

Clearly, more work needs to be done in studying the effect of season and year on classification
performance. The existing multidate/multiscene montage data are in a suitable form to study this
effect since numerous training, test, and ground truth sites have been extracted. However, the task
was beyond the level of effort that could be allocated. Other technical issues have presented
themselves that should be addressed first.

In particular, the lack of consistency and wide swings in performance for the Euclidean minimum
distance and conventional Bayesian classifier suggest some fundamental instabilities. Two
candidate sources are (1) inadequate estimates of the class covariance matrices introduced by
quantization effects and outliers in the training samples, and (2) violations of model assumptions
and possible degeneracies in the spectral space introduced by mixtures as well as changes in
mixing proportions of aggregate materials (e.g. swamps).

The modified Bayes approach has taken some steps to overcome these problems. The minimum
variance criterion seems to have corrected the problem of quantization effects (small variance) on
the covariance estimates, and the chi-squared rejection threshold flags potential mixture candidates.
Therefore, what remains is to incorporate a mechanism for reducing the effect of outliers on the
covariance estimates, and a method to handle mixtures.

The experience gained in this effort should be useful to future spectral sensing work involving
higher spectral resoluton data. In particular, the variance of spectral components is likely to have
an adverse effect on any algorithm that does not appropriately incorporate this phenomena. For
example, it becomes quite clear from observing the signatures of various grass sites that there is no
unique grass signature. Similarly, there is no unique water signature; no unique field signature; no
unique asphalt signature; etc. Unless one is looking for unique absorption features of a specific
material, it will become necessary to incorporate variance. If a reference lirary of spectral data is
used in the processing, the spectral variance of materials must be incorporated in or be computable
from the library.

Also remember that many of the classification errors occurred because either the samples in
question did not correspond to a prototype class, or they were mixtures of the materials represented
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APPENDIX A

Table AS Clab Mom Veoior fr the Class" in Dataset B - Oct 1985

11 AZ Ii &A U III

tage"M 87.79 51•34 8032 72.18 127.0 66-55

IFIsds-A 74. 31.13 42-35 46.23 90.91 44.32

Felsrd-C ".31 27A 26.96 77.71 74.20 24.90

Fielde-D 67.13 27.74 25.66 97.73 82.02 25.45

Groos-A 73.20 30.00 31.58 77.10 84.67 29.70

Graos- &4133 26.17 27_54 S8,3 59.42 20.63

Gras-C 73.26 30.97 34.65 71.61 93.74 34.10

Last 61JO 23.20 23.29 65.31 51.38 14.62

PIe. 61A6 22.6 20-53 49.73 34.04 10.87

Red.-A 853.2 34.94 40.82 42.55 54.31 28.11

Itaway-C 74A61 2&.42 28.06 19.92 2S.00 1833

amewa•-I. 131-39 69-39 96.19 82.87 131.04 73.29

Swemp-A 65J82 23.40 25.63 30.58 39.5- 15.25

Swomp-S 653A7 24.00 23.17 34.25 40.42 16.58

Urbo*-D 153.33 7X.22 102-11 76.15 124.89 84.48

Urbes-f 136.67 64.13 31.87 67.27 93.67 44.53

Urbee-I 109.14 55.36 76.00 59,93 93.36 50.79

Woalr-Al 63.17 22.74 19"5 8.57 3.85 1.62

Weser-A2 60.08 20.70 18.64 8.42 3.68 1.46

Warer-C 100.92 47.54 50.62 17.39 7.85 3.62

Table A6 Clas Mao Vectors for the Clases in Dataset B - March 1989

ILL IU II DA Au 12

Saratell 103.16 511.1 68.61 75.29 141.63 76.40

Flelds-A 100.17 45.20 57T8 70.91 107.79 48.35

FIelds-C 110L20 4803 63,9 62.84 107.06 48.77

Flolds-D 126-7 54.38 71.30 84.31 123.81 51.85

Grass-A 100.53 43.79 54.45 64.66 105.61 44.89

Grass-S 9421 38.88 48.75 52.46 97.67 42.79

Grass-C 100.55 44.19 58.74 66.61 130.42 56.58

Lot 95.93 37.76 46.40 51.30 87.54 37.31

Pise 89.91 35.28 36.86 55.41 51.97 19.62

Read-A 105.42 44.31 54.62 45.75 68.76 37.68

Raaway-C 101.91 40.39 46.03 32.90 44.58 26.97

Ruaway-F 137-33 66.6 93.34 75.89 124.67 67.23

Smwmp-A 86.00 32.60 35.78 29.76 41.04 17.51

Swamp-B 82.33 29.92 29.17 24.17 21.83 10.17

Urbaa-D 156.96 76126 103.74 76.82 129.74 82.41

Urbes-F 147.73 67.73 89.33 71-33 115.13 55.33

Urbau-I 135.57 69.07 96.43 74.29 120.93 68.93

Water-Al 86.63 33.37 30.20 15.89 6.93 3.42

Water-A2 86.49 33.63 31.03 15-38 5.37 2.38

Water-C 115.85 54.15 58.85 2123 9.92 4.23
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APPENDIX A

Table A7 Covariance Matrices for Classes In Dataset A - May 1987

Water 1
Ii 2 ju BA UI &2

B1 4.23 1.73 1.53 1.92 3.58 2.01
B2 1.73 1.3S 0.92 0.78 1.68 1.08
B3 1.53 0.92 1.69 -038 0.44 0.43
B4 1.92 0.78 -0.38 9.07 9.59 4.63
B5 3.58 1.68 0.44 9.59 14.60 6.67
B7 2.01 1.08 0.43 4.63 6.67 4.38

3. Reef

LI u A .4 IU 12
B1 0.42 -1.86 -3.70 -2.76 -4.88 -2.13
52 -1.86 424.09 508.94 450.23 466.51 217.16
B3 -3.70 508.94 643.30 549.00 563.84 254.03
54 -2.76 450.23 549.00 486.40 504.66 230.85

$5 -4.88 466.51 563.84 504.66 826.54 369.17
B7 -2.13 217.16 254.03 230.85 369.17 174.88

D. Veg

IL jU Bu BIA BU &
B1 1.42 0.37 0.23 2.15 0.19 0.13
52 0.37 0.69 0.32 0.86 0.65 0.22
B3 0.23 0.32 0.62 0.10 0.60 0.33
54 2.15 0.86 0.10 29.69 7.97 0.27
B5 0.19 0.65 0.60 7.97 8.86 1.47
B7 0.13 0.22 0,33 0.27 1.47 1.12

C. Veg
Ii BU !U A jU 112

B1 1.93 -0.06 0.27 -1.66 -0.42 0.21
B2 -0.06 0.62 -0.01 0.51 0.34 0.14
B3 0.27 -0.01 0.80 -1.45 -0.38 0.14
B4 -1.66 0.51 -1.45 17.27 5.70 0.74
B3 -0.42 0.34 -0-38 5.70 8.72 2.03
B7 0.21 0.14 0.14 0.74 2.03 1.49
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APPENDIX A

Covariance Matrices for Classes In Dataset A (continued)

Asphalt
LI 158 IA 15 D7

B1 24.87 10.71 16.05 2.23 8.62 5.12
B2 10.71 6.60 8.83 3.41 5.63 3.00
B3 16.05 8.83 14.06 4.08 8.05 4.65
B4 2.23 3.41 4.08 13.51 8.82 2.78

B5 8.62 5.63 8.05 8.82 13.05 4.81

B7 5.12 3.00 4.65 2.78 4.81 4.14

Concrete
ju , 15 RA 15 12

BI 39.68 16.83 16.92 3.43 6.37 4.00

B2 16.83 11.80 14.64 3.84 11.20 7.61
B3 16.92 14.64 23.67 6.37 21.80 16.31
B4 3.43 3.84 6.37 4.91 8.40 4.94
B5 6.37 11.20 21.80 8.40 34.82 23.36
B7 4.00 7.61 16.31 4.94 23.36 21.30

Water 2

i 15 15 IBA 8s jL
BI 2.03 -0.29 0.26 0.02 0.27 0.21
B2 -0.29 0.39 0.06 -0.14 -0.19 -0.13
B3 0.26 0.06 0.48 -0.15 -0.01 0.03

B4 0.02 -0.14 -0.15 0.68 0.10 0.07
B3 0.27 -0.19 -0.01 0.10 0.97 0.00

B7 0.21 -0.13 0.03 0.07 0.00 0.69

Grass- A
Ii Il 15 DA 15 R7

B1 23.30 13.32 25.73 17.55 32.76 16.67

B2 13.32 9.72 17.38 14.93 20.85 9.22
B3 25.73 17.38 35.89 29.08 38.58 17.72

B4 17.55 14.93 29.08 69.41 17.57 -7.49

B5 32.76 20.85 38.58 17.57 75.51 39.33

B7 16.67 9.22 17.72 -7.49 39-33 28.88
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AMW~DIX A

Table AS Correlation Matrices for Clase Ina Dataset A - May 196

Water 1
£1 ii ii W JIi Al

31 1.00 0.73 0.57 0.31 0.46 0.47
32 0.73 1.00 0.61 0.22 0.38 0.44
33 0.57 0.61 1.00 .0.10 0.09 0-16
34 0.31 0.22 410O 1.00 0*3 0.73
as 0.46 0.38 0.09 0.83 1.00 0.823
57 0.47 0.4 0.16 M.73 0.M 1.00

3. RL~o
II Ii UU j U £2

B1 1.00 414 4M 40119 -026 ).023
32 4014 1.00 0a97 0.99 0.79 0*0
33 4022 0.97 1.00 0.96 0.77 0-74
S4 419 0.99 0.96 1.00 0.80 0.79
3s -0.26 0.79 M.77 0*0 1.00 a97
87 -0-25 0.80 0.76 0.79 0.97 1.00

D. Ve

31 1.00 0.37 0.5 0.33 0,05 010
32 0-37 1.00 0.49 0.39 0-26 023
33 0.25 0.49 3.00 0,02 0.26 0.39
34 0.33 0.19 0.02 5.00 0,49 003
35 0.05 0.26 0.26 0&49 1.00 0 47
37 0.10 0.5 0.39 orn3 0.47 1.00

C. Vag

31 1.00 405 0.22 .02" 0,130 012
32 4005 1.00 40101 0.16 0.14 014
53 0.22 403l 1.00 40L" 0.014 013
34 -0.29 0. 16 -0.39 1.00 0.46 035
as 4).10 0.14 -0.14 0a46 1.00 0536
37 0.32 0.14 0.13 0.15 0.5% 1.00
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APPENDIX B

Coadwa~sY T*Nds Iteafnd for Trial 81 (continued)

T1h. 52 - i
C O..M. CY 1 RA&TS -Tm Dam St B2

Wasw I SL RSea D. VqY C. Vq Aspkale Coacete Water 2 TOTAL
Cetu¢t1te 0 0 0 0 34 0 0 34

TZC10 0 0 0 0 0 26 0 26

hpem~d I 0 0 to 0 0 0 0 60

Seb~ s 0 0 0 0 4 24 0 28
Mwal 0 0 0 0 33 29 0 62

Ihwid 1 0 0 69 0 0 0 0 69
**#**ot0 0 0 0 0 0 38 0 38

flol4.-A 0 0 260 I 146 593 0 1000

UIesC-. 0 0 0 0 48 53 0 101

Iflows-D 0 0 105 0 1 0 0 106
Go$s-^ 0 0 0 0 35 52 0 87
Go*-* 0 0 23 0 1 0 0 24

GCes,-C 0 0 29 0 2 0 0 31

Lou# 0 0 958 42 0 0 0 1000

IPle 0 0 2 387 4 0 0 393

Sood-A 0 0 1 2 432 66 0 501
MoswoyeC 0 0 0 0 78 0 0 78

fhawey.I 0 0 0 0 0 97 0 97

Swemp-A 45 0 0 9s 527 0 4 671

smSli 0 0 0 4 8 0 0 12

oebo.e- 0 0 0 0 0 27 0 27

Utb**-r 0 0 0 0 7 1 0 1i

Veboo-I 0 0 0 0 6 14 0 14
Wase.AI 9 0 0 0 152 0 799 1000

Wstef-A) 0 0 0 0 27 0 973 1000

Wolr..C It 0 0 0 2 0 0 13
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APPENDIX B

Contingency Table Results for Trial #1 (continued)

Table B2 - iii
EUCIMEAN CONTINGENCY RESULTS -Test Data m Set B2

Water I B. Roof D. Veg C. Veg Asphalt Coacete Water 2 TOTAL

Construction 0 0 0 18 16 0 0 34

TEC Site 0 0 0 0 13 13 0 26

Parkland 1 0 0 59 1 0 0 0 60

High School 0 0 0 0 1i 13 0 28

Mall 0 0 0 0 44 18 0 62

Parkland 2 0 0 69 0 0 0 0 69

BareSoli 0 0 0 0 37 1 0 38

Fields-A 0 0 344 23 532 101 0 1000

Fields-C 0 0 0 0 49 52 0 101

Fields-D 0 0 106 0 0 0 0 106

Grass-A 0 0 67 4 16 0 0 87

Grass-B 0 0 24 0 0 0 0 24

Grass-C 0 0 31 0 0 0 0 31

Leaf 0 0 945 55 0 0 0 1000

Pine 0 0 0 393 0 0 0 393

Road-A 0 0 5 13 475 8 0 501

Runway-C 0 0 0 0 78 0 0 78

Runway-F 0 0 0 0 0 97 0 97

Swamp-A 67 0 0 360 12 0 232 671

Swamp-B 0 0 0 12 0 0 0 12

Urban-D 0 0 0 0 0 27 0 27

Urban-F 0 0 0 0 7 8 0 15

Urban-I 0 0 0 0 0 14 0 14

Water-Al 113 0 0 0 0 0 887 1000

Water-A2 0 0 0 0 0 0 1000 1000

Water-C 13 0 0 0 0 0 0 13
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"APPENDIX 8

Table B3 Contingency Table Results for Trial #2

Table B3 - i
BAYES CONTINGENCY RESULMS - Tet Data =Set B2

CLASS Water 1 B.Roof D. Veg C. Veg Asphalt Concrete Water 2 Grass-A TOTAL
Construction 0 0 0 0 2S 0 0 9 34
TEC Site 0 0 0 0 0 4 0 22 26
Parkland I 0 0 60 0 0 0 0 0 60
High School 0 0 0 0 3 22 0 3 21
Mall 0 0 0 0 30 23 0 9 62
Parkland 2 0 0 1 0 0 0 0 68 69
BareSoil 0 0 0 0 0 33 0 S 3•0
Fields-A 0 0 260 1 0 104 0 635 00o
Flelds-C 0 0 0 0 0 50 0 SI l0i
Fieids-D 0 0 76 0 0 0 0 3 0 0e6
Grass-B 0 0 7 0 0 0 0 I ? 24
Grass-C 0 0 18 0 0 0 0 1 j i I
Leaf 0 0 928 14 0 0 0 5S It$$
Pine 0 0 2 346 0 0 0 4S i9)
Road-A 0 0 0 0 325 17 0 159 sot
Runway-C 0 0 0 0 78 0 0 o
Runway-F 0 0 0 0 0 9 3 0 a
Swamp-A 45 0 0 77 309 0 4 I)6 ,
Swamp-B 0 0 0 1 0 0 i i 1
Urbaa-D 0 0 0 0 0 27 0 a
Urban-F 0 0 0 0 7 3 o 0 s
Urban-I 0 0 0 0 0 1 4 0 a
Water-Al 19 0 0 0 169 0 oil ie
Water-A2 0 0 0 0 26 0 974 C' 1000

Water-C 1 1 0 0 0 2 0 0 C
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APPENDIX B

Contingency Table Results for Trial #2 (continued)

Table B3 - iM
EUCLIDEAN CONTINGENCY RESULTS -Teat Data= Set B2

CLASS Water I D.Roof D. Veg C. Veg Asphalt Concrete Water 2 Grass-A TOTAL
Construction 0 0 0 18 16 0 0 0 34
TEC Site 0 0 0 0 0 9 0 17 26
Parkland 1 0 0 59 1 0 0 0 0 60
High School 0 0 0 0 2 6 0 20 28
Mail 0 0 0 0 29 13 0 20 62
Parkland 2 0 0 57 0 0 0 0 12 69
BareSoll 0 0 0 0 0 0 0 38 38
Fields-A 0 0 265 1 11 61 0 662 1000
Fields-C 0 0 0 0 36 so 0 1i 101
Fields-D 0 0 104 0 0 0 0 2 106
Grass-B 0 0 23 0 0 0 0 1 24
Grass-C 0 0 28 0 0 0 0 3 31
Leaf 0 0 945 55 0 0 0 0 1000
Pine 0 0 0 392 0 0 0 1 393
Road-A 0 0 1 7 354 0 0 139 501
Runway-C 0 0 0 0 78 0 0 0 78
Runway-F 0 0 0 0 0 96 0 1 97
Swamp-A 67 0 0 360 11 0 232 1 671
Swamp-B 0 0 0 12 0 0 0 0 12
Urban-D 0 0 0 0 0 27 0 0 27
Urban-F 0 0 0 0 6 8 0 1 1i
Urban-I 0 0 0 0 0 14 0 0 14
Water-Al 113 0 0 0 0 0 887 0 1000
Water-A2 0 0 0 0 0 0 1000 0 1000
Water-C 13 0 0 0 0 0 0 0 13
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APPENDIX B

Table B4 Contingency Table Results for Trial #3

Table B4- i

MODIFIED BAYES CONTINGENCY RESULTS - Test Data = B2 with X2 (6) .16.S1

MinVar = 16 on Water, MinVar-3 on other classes

CLASS Water 1 B.Roof D. Veg C. Veg Asphalt Concrete Water 2 Grass-B NULL
Construction 0 0 0 0 0 0 0 0 34
TEC Site 0 0 0 0 0 0 0 0 26
Parkland 1 0 0 33 0 0 0 0 0 27

High School 0 0 0 0 0 0 0 0 28

Mall 0 0 0 0 0 0 0 0 62

Parkland 2 0 0 0 0 0 0 0 0 69
BareSoil 0 0 0 0 0 0 0 0 38
Fields-A 0 0 9 0 0 0 0 0 991
Fields-C 0 0 0 0 0 0 0 0 101
Fields-D 0 0 0 0 0 0 0 34 72
Grass-A 0 0 0 0 0 0 0 0 87
Grass-C 0 0 0 0 0 0 0 6 25
Leaf 0 0 712 0 0 0 0 39 249
Pine 0 0 0 262 0 0 0 0 131
Road-A 0 0 0 0 67 0 0 0 434
Runway-C 0 0 0 0 0 0 0 0 78
Runway-F 0 0 0 0 0 2 0 0 95

Swamp-A 0 0 0 0 0 0 6 0 665
Swamp-B 0 0 0 0 0 0 0 0 12
Urban-D 0 0 0 0 0 0 0 0 27

Urban-F 0 0 0 0 0 0 0 0 15

Urban-I 0 0 0 0 0 3 0 0 11
Water-Al 4 0 0 0 0 0 870 0 126
Water-A2 0 0 0 0 0 0 993 0 7
Water-C 0 0 0 0 0 0 0 0 13

TOTAL 4 0 754 262 67 5 1869 79 3423
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APPENDIX 8

Contingecy Table Results for Trial #3 (continued)

Table B4 . UI
MODIEFID BAYES CONTMOENCY RESULTS - Test Data a B2 with X2(6) - 84.05

MinVar = 16 on Water, MinVar-3on other classesCLASS Water 1 D.Roof D. Veg C. Veg Asphalt Concrete Water 2 Grass.B NULL
Construction 0 0 0 0 20 0 0 0 14
TEC Site 0 0 0 0 0 0 0 0 26
Parkland 1 0 0 60 0 0 0 0 0 0
High School 0 0 0 0 0 1 0 0 27
Mall 0 0 0 0 1 1 0 0 60
Parkland 2 0 0 0 0 0 0 0 59 10
BareSoil 0 0 0 0 0 0 0 0 38
Fields-A 0 0 261 0 0 3 0 78 658
Flelds-C 0 0 0 0 0 0 0 0 101
Fields-D 0 0 2 0 0 0 0 104 0
Grass-A 0 0 0 0 0 0 0 34 53
Grass-C 0 0 1 0 0 0 0 29 1
Leaf 0 0 844 23 0 0 0 133 0
Pine 0 0 2 382 0 0 0 4 5
Road-A 0 0 0 0 164 0 0 9 328
Runway-C 0 0 0 0 72 0 0 0 6
Runway-F 0 0 0 0 0 75 0 0 22
Swamp-A 74 0 0 51 0 0 163 0 383
Swamp-B 0 0 0 5 0 0 0 1 6
Urban-D 0 0 0 0 0 10 0 0 17
Urban-F 0 0 0 0 0 1 0 0 14
Urban-I 0 0 0 0 0 13 0 0 1
Water-Al 110 0 0 0 0 0 890 0 0
Water-A2 0 0 0 0 0 0 1000 0 0
Water-C 0 0 0 0 0 0 0 0 13
TOTAL 184 0 1170 461 257 104 2053 451 1783
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APPENDIX B

Contingency Table Results for Trial #3 (continued)

Table B4 - Mi

MODIFIED BAYES CONTINOENCY RESULTS - Test Data - B2 with X2(6) - 117.67
MinVar = 16 on Water, MinVar=3 on other classes

CLASS Water 1 B.Roof D. Veg C. Veg Asphalt Concrete Water 2 Grass.B NULL

Construction 0 0 0 0 28 0 0 0 6

TEC Site 0 0 0 0 0 0 0 0 26

Parkland 1 0 0 60 0 0 0 0 0 0

High School 0 0 0 0 0 4 0 0 24

Mall 0 0 0 0 3 S 0 0 54

Parkland 2 0 0 0 0 0 0 0 68 1

BareSoil 0 0 0 0 0 0 0 0 38

Fields-A 0 0 261 0 0 50 0 112 577

Fields-C 0 0 0 0 0 8 0 0 93

Flelds-D 0 0 2 0 0 0 0 104 0

Grass-A 0 0 0 0 0 0 0 53 34

Grass-C 0 0 1 0 0 0 0 29 1

Leaf 0 0 844 23 0 0 0 133 0

Pine 0 0 2 383 0 0 0 7 1

Road-A 0 0 0 0 217 0 0 13 271

Runway-C 0 0 0 0 77 0 0 0 1
Runway-F 0 0 0 0 0 84 0 0 13
Swamp-A 84 0 0 107 16 0 215 1 248

Swamp-B 0 0 0 6 0 0 0 5 1

Urban-D 0 0 0 0 0 26 0 0 1

Urban-F 0 0 0 0 0 2 0 0 13

Urban-I 0 0 0 0 0 14 0 0 0
Water-Al 110 0 0 0 0 0 890 0 0

Water-A2 0 0 0 0 0 0 1000 0 0

Water-C 0 0 0 0 0 0 0 0 13

TOTAL 194 0 1170 519 341 193 210S S25 1416
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APPENDIX B

Contingency Table Results for Trial *3 (continued)

Table B4 - iv

MODIFIED BAYES CON71NGENCY RESULTS - Test Data =Set 132; with X2 (6) a 00
MinVar=16 on Water, MinVar = 3 on other classes

CLASS Water 1 B.Roof D. Veg C. Veg Asphalt Concrete Water 2 Grass-B TOTAL

Construction 0 0 0 0 33 0 0 1 34
TEC Site 0 0 0 0 0 25 0 1 26
Parkland 1 0 0 60 0 0 0 0 0 60
High School 0 0 0 0 4 24 0 0 28
Mall 0 0 0 0 33 28 0 1 62
Parkland 2 0 0 0 0 0 0 0 69 69
BareSoil 0 0 0 0 0 38 0 0 38
Fields-A 0 0 261 0 20 412 0 307 1000
Fields-C 0 0 0 0 17 52 0 32 101
Flelds-D 0 0 2 0 0 0 0 104 106
Grass-A 0 0 0 0 0 0 0 87 87
Grass-C 0 0 1 0 0 0 0 30 31
Leaf 0 0 844 23 0 0 0 133 1000
Pine 0 0 2 383 0 0 0 8 393
Road-A 0 0 0 0 407 59 0 35 501
Runway-C 0 0 0 0 78 0 0 0 78
Runway-F 0 0 0 0 0 97 0 0 97
Swamp-A 88 0 0 174 102 0 229 78 671
Swamp-B 0 0 0 6 0 0 0 6 12
Urban-D 0 0 0 0 0 27 0 0 27
Urban-F 0 0 0 0 7 8 0 0 15
Urban-I 0 0 0 0 0 14 0 0 14
Water-Al 110 0 0 0 0 0 890 0 1000
Water-A2 0 0 0 0 0 0 1000 0 1000
Water-C 13 0 0 0 0 0 0 0 13

TOTAL 211 0 1170 586 701 784 2119 892 6463
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APPENDIX B

Coutingency Table Results for Trial 93 (continued)

Table B4 -v
STANDARD BAYES CONTINGENCY RESULTS - Test Data - Set 82 (No minimum variance or rejection criteria)

CLASS Water 1 3.Roof D. Veg C. V.g Asphalt Concrete Water 2 Grass-B TOTAL

Construction 0 0 0 0 33 0 0 1 34

TEC Site 0 0 0 0 0 25 0 1 26

Parkland 1 0 0 60 0 0 0 0 0 60

High School 0 0 0 0 4 24 0 0 28

Mall 0 0 0 0 33 28 0 1 62

Parkland 2 0 0 0 0 0 0 0 69 69

BareSoll 0 0 0 0 0 31 0 0 38

Fields-A 0 0 241 1 21 418 0 319 1000

Fields-C 0 0 0 0 17 52 0 3 2 101

Flelds-D 0 0 1 0 0 0 0 105 106

Grass-A 0 0 0 0 0 0 0 87 87

Grass-C 0 0 0 0 0 0 0 31 31

Leaf 0 0 806 22 0 0 0 172 1000

Pine 0 0 2 378 0 0 0 13 393

Road-A 0 0 0 0 408 60 0 33 501

Runway-C 0 0 0 0 78 0 0 0 78

Runway-F 0 0 0 0 0 97 0 0 97

Swamp-A 45 0 0 108 446 0 4 68 671

Swamp-B 0 0 0 3 0 0 0 9 12

Urban-D 0 0 0 0 0 27 0 0 27

Urban-F 0 0 0 0 7 8 0 0 1s

Urban-I 0 0 0 0 0 14 0 0 14

Water-Al 19 0 0 0 169 0 812 0 1000

Water-A2 0 0 0 0 26 0 974 0 1000

Water-C 11 0 0 0 2 0 0 0 13

TOTAL 75 0 1110 512 1244 791 1790 941 6463
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APPENDIX B

Contingency Table Results for Trial #3 (continued)

Table B4 - vi
MAHALANOBIS CONTINGENCY RESULTS -Tedt Data = Set B2

CLASS Water 1 B.Roof D. Veg C. Veg Asphalt Concrete Water 2 Grass-B TOTAL

Construction 0 0 0 0 33 0 0 1 34
TEC Site 0 0 0 0 0 25 0 1 26
Parkland 1 0 0 60 0 0 0 0 0 60
High School 0 0 0 0 4 24 0 0 28
Mail 0 0 0 0 33 28 0 1 62
Parkland 2 0 0 0 0 0 0 0 69 69

BareSoIl 0 0 0 0 0 38 0 0 38
Flelds-A 0 0 222 1 20 420 0 337 1000

Fields-C 0 0 0 0 16 52 0 33 101
Flelds-D 0 0 0 0 0 0 0 106 106

Grass-A 0 0 0 0 0 0 0 87 87
Grass-C 0 0 0 0 0 0 0 31 31
Leaf 0 0 766 19 0 0 0 215 1000

Pine 0 0 2 376 0 0 0 15 393

Road-A 0 0 0 0 408 60 0 33 501

Runway-C 0 0 0 0 78 0 0 0 78

Runway-F 0 0 0 0 0 97 0 0 97
Swamp-A 45 0 0 94 460 0 4 68 671
Swamp-B 0 0 0 3 0 0 0 9 12

Urban-D 0 0 0 0 0 27 0 0 27
Urban-F 0 0 0 0 7 8 0 0 15
Urban-I 0 0 0 0 0 14 0 0 14
Water-Al 19 0 0 0 182 0 799 0 1000
Water-A2 0 0 0 0 27 0 973 0 1000
Water-C 11 0 0 0 2 0 0 0 13

TOTAL 75 0 1050 493 1270 793 1776 1006 6463
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APPENDIX B

Contingency Table Results for Trial #3 (continued)

Table 34 - vii
ELM AN CONT1NGENCY RESULT3 - Tee Datma = Set B2

CLASS Water 1 B.Roof D. Veg C. Veg Asphalt Concrete Water 2 Grass-B TOTAL
Construction 0 0 0 18 16 0 0 0 34
TEC Site 0 0 0 0 9 13 0 4 26
Parkland 1 0 0 59 1 0 0 0 0 60
High School 0 0 0 0 1i 13 0 0 28
Mall 0 0 0 0 42 18 0 2 62
Parkland 2 0 0 0 0 0 0 0 69 69
BareSoil 0 0 0 0 37 1 0 0 38
Fields-A 0 0 260 1 502 99 0 138 1000

Fields-C 0 0 0 0 48 52 0 1 101
Flelds-D 0 0 39 0 0 0 0 67 106
Grass-A 0 0 0 0 0 0 0 87 87
Grass-C 0 0 12 0 0 0 0 19 31

Leaf 0 0 885 44 0 0 0 71 1000
Pine 0 0 0 393 0 0 0 0 393

Road-A 0 0 0 7 469 8 0 17 501
Runway-C 0 0 0 0 78 0 0 0 78
Runway-F 0 0 0 0 0 97 0 0 97
Swamp-A 67 0 0 360 12 0 232 0 671
Swamp-B 0 0 0 9 0 0 0 3 12

Urban.D 0 0 0 0 0 27 0 0 27
Urban-F 0 0 0 0 7 a 0 0 1s
Urban-I 0 0 0 0 0 14 0 0 14
Water-Al 113 0 0 0 0 0 887 0 1000
Water-A2 0 0 0 0 0 0 1000 0 1000

Water-C 13 0 0 0 0 0 0 0 13

TOTAL 193 0 1255 833 1235 350 2119 478 6463
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APPENDIX B

Table B5 Contingency Table Results for Trial #4

MODIFIED BAYES CONTINGENCY RESULTS - Test Data = B2 with X2(6) = 13.28
MinVar = 16 on Water, MinVar=-3 on other classes

CLASS Water 1 B.Roof D. Veg C. Veg Asphalt Concrete Water 2 Grass-B NULL
Construction 0 0 0 0 0 0 0 0 34
ETL Site 0 0 0 0 0 0 0 0 26
Parkland 1 0 0 33 0 0 0 0 0 27
High School 0 0 0 0 0 0 0 0 28
Mall 0 0 0 0 0 0 0 0 62
Parkland 2 0 0 0 0 0 0 0 0 69
BareSoil 0 0 0 0 0 0 0 0 38
FIelds-A 0 0 5 0 0 0 0 0 995
Fields-C 0 0 0 0 0 0 0 0 101
Flelds-D 0 0 0 0 0 0 0 43 63
Grass-A 0 0 0 0 0 0 0 0 87
Grass-C 0 0 0 0 0 0 0 6 25
Leaf 0 0 699 0 0 0 0 80 221
Pine 0 0 0 290 0 0 0 0 103
Road-A 0 0 0 0 74 0 0 1 426
Runway-C 0 0 0 0 1 0 0 0 77
Runway-F 0 0 0 0 0 7 0 0 90
Swamp-A 0 0 0 0 0 0 5 0 666
Swamp-B 0 0 0 0 0 0 0 0 12
Urban-D 0 0 0 0 0 0 0 0 27
Urban-F 0 0 0 0 0 0 0 0 25
Urban-I 0 0 0 0 0 3 0 0 11
Water-Al 2 0 0 0 0 0 874 0 124
Water-A2 0 0 0 0 0 0 996 0 4
Water-C 0 0 0 0 0 0 0 0 13

TOTAL 2 0 737 290 75 10 1875 130 3344
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APPENDIX B

Contingency Table Results for Trial #4 (continued)

MODIFIED BAYES CONTINGENCY RESULTS - Tet Det a 82 with X2(Q -6C4
MinVar = 16 on Water;, MinVar-3 on other classes

CLASS Water 1 D.Roof D. Veg C. Veg Asphalt Concrete Water 2 Grass-B NULL

Construction 0 0 0 0 17 0 0 0 17
ETL Site 0 5 0 0 0 0 0 0 21
Parkland I 0 0 60 0 0 0 0 0 0

High School 0 17 0 0 0 0 0 0 11

Mall 0 39 0 0 0 3 0 0 20
Parklaud 2 0 0 0 0 0 0 0 60 9

BareSoil 0 28 0 0 0 0 0 0 10
Flelds-A 0 282 258 0 0 5 0 70 385

Fields-C 0 2 0 0 0 1 0 0 98
Fields-D 0 0 2 0 0 0 0 104 0

Grass-A 0 0 0 0 0 0 0 26 61
Grass-C 0 0 2 0 0 0 0 28 1

Leaf 0 0 815 11 0 0 0 174 0

Pine 0 0 2 378 0 0 0 6 7

Road-A 0 160 0 0 147 0 0 8 186

Runway-C 0 7 0 0 69 0 0 0 2
Runway-F 0 36 0 0 0 s0 0 0 11
Swamp-A 101 0 0 30 0 0 116 0 424
Swamp-B 0 0 0 6 0 0 0 1 5
Urban-D 0 0 0 0 0 26 0 0 1
Urban-F 0 i5 0 0 0 0 0 0 0
Urbanu-I 0 1 0 0 0 12 0 0 1

Water-Al 94 0 0 0 0 0 906 0 0

Water-A2 1 0 0 0 0 0 999 0 0
Water-C 13 0 0 0 0 0 0 0 0

TOTAL 209 592 1139 425 233 97 2021 477 1270
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APPENDIX C

APPENDIX C: Supporting Data for Trial 5

Table C1 Auto-Classification Summary for Training Set B -Unconsolidated

No clsse an combined
_ _ Training Data MY87_1000Samples Training Data MYSS100OSamples

_Bayes Mahalanobis Eucliean Bayes Mabalanobis Fuclidean

Baresoll 0.00% 0.00% 0.00% 0.00% 0.00% 2.63%
Fields-A 36J.8% 12.30% 83.00% 9.60% 3.20% 47.10%
Filtds-C 2.97% 9.90% 92.08% 1.98% 1.98% 2.97%
Fields-D 3.77% 5.66% 1132% 0.00% 0.00% 4.72%
Grass-A 230% 5.75% 2.30% 1.15% 12.64% 1.15%
Grass-B 0.00% 8.33% 16.67% 0.00% 0.00% 12.50%
Grass-C 0.00% 16.13% 16.13% 0.00% 3.23% 6.45%
Leaf 3.10% 27.30% 82.0% 1.30% 1.80% 6.50%
Pine 2.80% 8.14% 10.69% 2.80% 12.72% 17.56%
Road-A 8.38% 10.98% 30.34% 3.99% 6.99% 19.36%
Ruaway-C 5.13% 5.13% 5.13% 1.28% 1.28% 0.00%
Runway-F 0.00% 0.00% 4.12% 0.00% 0.00% 0.00%
Swamp-A 0.45% 0.30% 30.40% 1.34% 3.13% 9.84%
Swamp-B 0.00% 0.00% 16.67% 0.00% 0.00% 8.33%
Urban-D 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Urban-F 0.00% 0.00% 6.67% 0.00% 0.00% 0.00%
Urbana- 0.00% 0.00% 0.00% 0.00% 0.00% 7.14%
Water-Al 32.00% 10.30% 34.60% 10.40% 15.50% 34.90%
Water-A2 16.50% 42.50% 20.70% 15.00% 10.80% 34.10%
Water-C 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
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APPENDIX C

Table Cl Auto-Classification Summary for Training Set B -Unconsolidated
(continued).

No class arm combined
Training Data AG8$1000Samples Training Data OCS_1000Samples

_ _ _ Bayes Mahalanobis Euclidean Bayes Mahalanobis Euclidean
Baresoll 0.00% 0.00% 2.63% 0.00% 0.00% 7.89%
Fields-A 5.70% 4.20% 24.10% 0.80% 0.50% 25.80%
Fields-C 3.96% 6.93% 46.53% 4.95% 4.95% 17.82%
Flields-D 8.49% 7.55% 20.75% 5.66% 4.72% 15.09%
Grass-A 0.00% 0.00% 0.00% 11.49% 11.49% 34.48%
Grass-B 0.00% 0.00% 0.00% 4.17% 4.17% 20.83%
Grass-C 0.00% 0.00% 0.00% 6.45% 9.68% 19.35%
Leaf 3.00% 2.60% 9.10% 8.40% 8.00% 24.60%
Pine 2.80% 6.62% 11.70% 2.80% 15.27% 3.82%
Road-A 1.80% 0.80% 7.98% 2.59% 1.80% 32.14%
Runway-C 0.00% 1.28% 1.28% 1.28% 5.13% 0.00%
Runway-F 0.00% 0.00% 0.00% 0.00% 0.00% 3.09%
Swamp-A 0.45% 0.75% 2.24% 7.00% 3.73% 59.76%
Swamp-B 0.00% 0.00% 0.00% 0.00% 16.67% 0.00%
Urban-D 0.00% 0.00% 0.00% 0.00% 0.00% 3.70%
Urban-F 0.00% 0.00% 6.67% 0.00% 0.00% 0.00%
Urban-I 0.00% 0.00% 14.29% 0.00% 0.00% 0.00%
Water-Al 32.50% 12.90% 56.70% 12.50% 12.90% 15.00%
Water-A2 11.00% 29.80% 24.60% 7.00% 7.30% 17.70%
Water-C 0.00% 0.00% 7.69% 0.00% 0.00% 0.00%
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Table C1 Auto-Classification Summary for Training Set B -Unconsolidated
(continued).

No classes are combined
Training Data MR89_100OSamples
Bayes Mahalandis Euclidean

Baresoll 0.00% 0.00% 0.00%
Fields-A 11.00% 2.40% 95.30%
Fields-C 10.89% 20.79% 86.14%
Fields-D 4.72% 8.49% 59.43%
Grass-A 2.30% 21.84% 18.39%
Grass-B 0.00% 50.00% 20.83%
Grass-C 6.45% 32.26% 6.45%
Leaf 11.20% 11.80% 63.00%
Pine 6.36% 3.56% 34.86%
Road-A 1038% 6.39% 35.93%
Runway-C 2.56% 19.23% 1.28%
Runway-F 5.15% 6.19% 16.49%
Swamp-A 2.68% 3.87% 29.81%
Swamp-B 0.00% 8.33% 0.00%
Urban-D 0.00% 0.00% 7.41%
Urban-F 0.00% 0.00% 6.67%
Urban-I 0.00% 0.00% 7.14%
Water-Al 47.90% 14.10% 57.60%
Water-A2 10.10% 69.10% 18.10%
Water-C 0.00% 0.00% 0.00%
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"APPENDIX D

APPENDIX D: Unear Model Results for Two Endmembers

Regression and ANOVA Tables Used in the Mixture Analysis

DEP VARS momJl• US 6 MULTIPLE Ris 0.990 SQUARED KULTI.LE R: 0.981
ADJUSTED SQUARED MULTIPLE Rs 0.968 STANDARD ERROR OF ESTIMATE: 5.027

VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE T P(2 TAIL)

COs!lT 5.993 4.123 0.000 . 1.454 0.242
Leaf C133 0.196 0.047 0.337 0.977 4.184 0.025
Water 3190 0.710 0.065 0.881 0.977 10.934 0.002

ANALYSIS Or VARIANCE

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P

REGRESSION 3907.349 2 1953.674 z..am 0.003
RESIDUAL 75.814 3 25.271

MODEL CONTAINS NO CONSTANT.

DEP VARs SxiN.-Sal Ns 6 MULTIPLE R: 0.996 SQUARED MULTIPLE Rs 0.992
ADJUSTED SQUARED MULTIPLE R: 0.990 STANDARD ERROR OF ESTIMATE: 5.684

VARIABLE COEFFXCIENT STD ERROR STD COEF TOLERANCE T P(2 TAIL)

Leaf C133 0.241 0.040 0.372 0.542 6.066 0.004
Water 3190 0.753 0.065 0.706 0.542 11.508 0.000

ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P

REGRESSION 15732.427 2 7866.214 2A3,17 0.000
RESIDUAL 129.210 4 32.302

DEP VAR: mwa i Nz 6 MULTIPLE R: 0.956 SQUARED MULTIPLE R: 0.915
ADJUSTED SQUARED MULTIPLE Rs 0.858 STANDARD ERROR Or ESTIMATE: 10.642

VARIABLE COEFFICIENT STD ERROR STD COEZ TOLERANCE T P( 2 TAIL)

CONSTANT -3.315 17.755 0.000 • -0.187 0.864
Concrete 3162 0.177 0.141 0.239 0.783 1.255 0.298
Water 3190 0.662 0.154 0.821 0.783 4.310 0.023

ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P

REGRESSION 3643.416 2 1821.708 16.086 0.025

RESIDUAL 339.747 3 113.249
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APPENDIX D

Regression and ANOVA Tables Used In the Mixture Analysis (continued)

MODEL CONTAINS NO CONSTANT.

DEP VAR I kAmmmu• NM 6 MULTIPLE Rs 0.989 SQUARED MULTIPLE Rs 0.978
ADJUSTED SQUARED MULTIPLE Rs 0.973 STANDARD ERROR OF ESTIMATEs 9.269

VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE T P(2 TAIL)

Concrete 3162 0.152 0.045 0.414 0.357 3.367 0.028
Water 3190 0.667 0.131 0.625 0.357 5.080 0.007

ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P

REGRESSION 15517.943 2 7758.971 22.30 0.000
RESIDUAL 343.694 4 85.924

MODEL CONTAINS NO CONSTANT.

DEP VAR: amua..J11 N: 6 MULTIPLE R3 0.999 SQUARED MULTIPLE Rs 0.999
ADJUSTED SQUARED MULTIPLE Rs 0.999 STANDARD ERROR OF ESTIMATE: 2.066

VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE T P(2 TAIL)

Grasn C125 0.220 0.013 0.395 0.525 17.457 0.000
Water 3190 0.731 0.024 0.685 0.525 30.274 0.000

ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P

REGRESSION 15844.564 2 7922.282 1856.111 0.000
RESIDUAL 17.073 4 4.268

MODEL CONTAINS NO CONSTANT.

DEP VARs ama.sm N: 6 MULTIPLE R: 0.998 SQUARED MULTIPLE Ri 0.997
ADJUSTED SQUARED MULTIPLE R: 0.996 STANDARD ERROR OF ESTIMATE: 3.508

VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE T P (2 TAIL)

Grass C123 0.232 0.023 0.416 0.457 10.154 0.001
Water 3190 0.693 0.044 0.649 0.457 15.755 0.000

ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P

REGRESSION 15812.424 2 7906.212 642,604 0.000
RESIDUAL 49.214 4 12.303
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APPENDIX D

Regression and ANOVA Tables Used In the Mixture Analysis (continued)

MODEL CONTAINS NO CONSTANT.

DEP VARs fimsmCul- N: 6 MULTIPLE Rs 0.999 SQUARED MULTIPLE Rt 0.997
ADJUSTED SQUARED MULTIPLE Rs 0.997 STANDARD ERROR OF ESTIMATE: 3.249

VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE T P(2 TAIL)

Pin* 3140 0.402 0.037 0.492 0.332 10.993 0.000
Water 3190 0.593 0.048 0.555 0.332 12.398 0.000

ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P

REGRESSION 15819.416 2 7909.708 74i.9357 0.000
RESIDUAL 42.221 4 10.555

MODEL CONTAINS NO CONSTANT.

DEP VARs amwsa f N8 6 MULTIPLE Rt 0.996 SQUARED MULTIPLE Rt 0.992
ADJUSTED SQUARED MULTIPLE Rs 0.989 STANDARD ERROR OF ESTIMATEs 5.780

VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE T P(2 TAIL)

Amphalt 5160 0.572 0.084 0.740 0.176 6.770 0.002
Pin* 5140 0.224 0.089 0.275 0.176 2.516 0.066

ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P

REGRESSION 15728.014 2 7864.007 235.409 0.000
RESIDUAL 133.623 4 33.406
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APPENDIX D

Regression and ANOVA Tables Used In the Mixture Analysis (continued)

MODEL CONTAINS NO CONSTANT.

DlP VAR s ka lan Us 6 MULTIPLE Rs 0.989 SQUARED MULTIPLE Ri 0.979
ADJUSTED SQUARED MULTIPLE Ri 0.974 STANDARD ERROR OF ESTIMATE: 9.150

VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE T P (2 TAIL)

Asphalt 3160 0.697 0.203 0.901 0.076 3.426 0.027
water 3190 0.098 0.281 0.092 0.076 0.348 0.745

ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P

REGRESSION 15526.728 2 7763.364 22A.72 0.000

RESIDUAL 334.909 4 83.727

MO0DEL CONTAINS NO CONSTANT.

DEP VAR:s Ammon-sm Nt 6 MULTIPLE Rs 0.996 SQUARED MULTIPLE Rs 0.991
ADJUSTED SQUARED MULTIPLE Rs 0.989 STANDARD ERROR OV ESTIMATEs 5.875

VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE T P(2 TAIL)

Asphalt 3160 0.652 0.059 0.843 0.379 11.122 0.000
Leaf C133 0.120 0.049 0.196 0.379 2.449 0.071

ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P

REGRESSION 15723.595 2 7861.798 227.802 0.000
RESIDUAL 138.042 4 34.510

MODEL CONTAINS NO CONSTANT.

DEP VARs kN...CMA Ni 6 MULTIPLE Rs 0.993 SQUARED MULTIPLE Rs 0.987
ADJUSTED SQUARED MULTIPLE Rs 0.983 STANDARD ERROR OF ESTIMATEs 7.269

VARIABLE COZFFICIENT STD ERROR STD COEF TOLERANCE T P(2 TAIL)

Grass C125 0.090 0.057 0.162 0.320 1.591 0.187
Asphalt 3160 0.661 0.079 0.855 0.320 8.388 0.001

ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES DV MEAN-SQUARE F-RATIO P

REGRESSION 15650.270 2 7825.135 liL.02 0.000
RESIDUAL 211.367 4 52.842
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APPENDIX D

Regression and ANOVA Tables Used In the Mixture Analysis (continued)

MDE0L0 CONTAINS NO CONSTANT.

DEP VARs in..•sm Ms 6 MULTIPLE Rs 0.999 SQUARED MULTIPLE Rs 0.999

ADJUSTED SQUARED MULTIPLE Rs 0.999 STANDARD ERROR OF ESTIMATE: 1.974

VARIABLE COEFFICIENT STD ERROR $TD COEF TOLERANCE T P(2 TAIL)

Leaf C133 0.134 0.014 0.223 0.542 9.693 0.001
Water 5190 0.827 0.023 0.835 0.542 36.357 0.000

ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARZS DF D AN-SQUARE F-RATIO P

REGRESSION 13622.411 2 6811.205 17470.36 0.000
RESIDUAL 15.568 4 3.897

MODEL CONTAINS NO CONSTANT.

DEP VAR: ai.a N: 6 MULTIPLE R: 0.995 SQUARED MULTIPLE Ri 0.990
ADJUSTED SQUARED MULTIPLE Rz 0.967 STANDARD ERROR OF ESTIMATE: 5.846

VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE T P(2 TAIL)

Concrete 8162 0.076 0.029 0.224 0.357 2.677 0.055
Water 3190 0.798 0.083 0.806 0.357 9.629 0.001

ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P

REGRESSION 13501.276 2 6750.638 197. 492 0.000
RESIDUAL 136.723 4 34.181

MODEL CONTAINS NO CONSTANT.

DEP VAR: hainsaW Nl 6 MULTIPLE Rs 1.000 SQUARED MULTIPLE Rs 1.000

ADJUSTED SQUARED MULTIPLE Rs 1.000 STANDARD ERROR OF ESTIMATE: 0.959

VARIABLE COEFFICIENT STD ERROR .J-, COE? TOLERANCE T P(2 TAIL)

Grass C125 0.119 0.006 0.230 0.525 20.282 0.000
water 3190 0.819 0.011 0.828 0.525 73.060 0.000

ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P

REGRESSION 13634.322 2 6PI• .161 JJ17-773 0.000
RESIDUAL 3.676 4 0.9.s
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"APPENDIX D

Regression and ANOVA Tables Used In the Mixture Analysis (continued)

NODEL CONTAINS NO CONSTANT.

DIP VARl i Nu 6 MULTIPLE R& 0.965 SQUARED MULTIPLE Rs 0.970

ADJUSTED SQUARED MULTIPLE Rs 0.962 STANDARD ERROR OF ESTIMATEs 10.143

VARIABLE COEFFICIENT STD ERROR STD CORP TOLERANCE T P(2 TAIL)

Asphalt a160 0.727 0.110 1.015 0.320 6.612 0.003
grass C125 -0.019 0.079 -0.036 0.320 -0.238 0.824

ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P

REGRESSIOM 13226.475 2 6613.237 UA.281 0.001

RESIDUAL 411.524 4 102.881

MODEL CONTAINS NO CONSTANT.

DZP VAR: i n...o11 Ns 6 MULTIPLE Ri 1.000 SQUARED MULTIPLE R: 1.000

ADJUSTED SQUARED MULTIPLE Ro 1.000 STANDARD ERROR OF ESTIMATE: 0.978

VARIABLE COEFFICIENT STD ERROR STD COUP TOLERANCE T P (2 TAIL)

Pine 5140 0.219 0.011 0.289 0.332 19.871 0.000
Water 5190 0.742 0.014 0.750 0.332 51.555 0.000

ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES Dr MEAN-SQUARE V-RATIO P

REGRESSION 13634.170 2 6817.085 7123-011 0.000

RESIDUAL 3.928 4 0.957

DIP VARs 2001Z N8 6 MULTIPLE Rt 0.979 SQUARED MULTIPLE Rt 0.958
ADJUSTED SQUARED MULTIPLE Rs 0.931 STANDARD ERROR OF ESTIMATEs 7.867

VARIABL COEFFICIENT STD ERROR STD COS? TOLERANCE T P(2 TAIL)

CONSTANT -14.536 7.601 0.000 -1.912 0.152
Fine 5140 0.145 0.134 0.155 0.672 1.082 0.358
Asphalt 5160 0.774 0.126 0.882 0.672 6.142 0.009

ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P

RGRESSION 4205.012 2 2142.506 JIAJA 0.•006

RESIDUAL 185.678 3 61.893
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APPENDIX D

Re]ressiom and ANOVA Tables Used In the Mixture Analysis (continued)

Du? VAR8 I Sratm no 6 MULTIPLE Rs 0.971 SQUARED MULTIPLE Re 0.942
AD3U6T=D SQUARED NULTXPLX its 0.928 STANDARD ERROR OF ESTNIATIs 8.034

VARIABLE CRPFIXCXIUT no ERROR •TD COUP TOLERANCE T P(2 TAIL)

CONSTANT -11.018 7.016 0.000 -1.570 0.191
Asphalt 3160 0.852 0.106 0.971 1.000 6.079 0.001

ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARE8 DF MZAN-SQUARE F-RATIO P

RtGREMSSXI 4212.539 1 4212.539 AL.LM 0.001

RESIDUALI 258.151 4 64.538

MODIL CONTAINS NO CUTANT.

DEP VAR: s in..-= us 6 MULTIPLE Rs 0.985 SQUARED MULTIPLE Rs 0.970

AD3JUSTED SQUARED MULTIPLE R: 0.962 STANDARD ERROR OF ESTIMATE: 10.149

VARIABLE COEFFICIEMT STD ERROR STD COEY TOLERANCE T P(2 TAIL)

PLnU 59140 0.035 0.157 0.047 0.176 0.226 0.832
Asphalt 5160 0.675 0.148 0.942 0.176 4.553 0.010

ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P

REORESSION 13225.952 2 6612.976 l4.19 0.001
RESIDUAL 412.047 4 103.012
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APPENDIX D

Regresslon and ANOVA Tables Used In the Mixture Analysis (continued)

MODEL CONTAINS NO CONSTANT.

DEP VARt Anna-=Z as 6 MULTIPLE as 0.990 SQUARED MULTIPLE Rs 0.980
ADJUSTED SQUARED MULTIPLE Ra 0.975 STANDARD ERROR OF ESTIMATE: 9.050

VARIABLE COEFFICIENT BTD ERROR STD CORF TOLERANCE T P( 2 TAIL)

Leaf C133 0.280 0.063 0.423 0.542 4.428 0.011
water 3190 0.713 0.104 0.654 0.542 6.844 0.002

ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P

REGRESSION 16256.170 2 8128.085 22a2W 0.000

RESIDUAL 327.604 4 81.901

NODEL CONTAINS NO CONSTANT.

DEP VAR& & ..RJ2. Us 6 MULTIPLE Ris 0.997 SQUARED MULTIPLE Rs 0.995

ADJUSTED SQUARED MULTIPLE R: 0.994 STANDARD ERROR OF ESTIMATEt 4.625

VARIABLE COEFFICIENT STD ERROR STD COEr TOLERANCE T P(2 TAIL)

Grass C125 0.263 0.028 0.461 0.525 9.295 0.001
Water 3190 0.679 0.054 0.622 0.525 12.561 0.000

ANALYSIS OF VARIANCE

SOURCE SUN-OF-SQUARES DF HEAN-SQUARE F-RATIO P

REGRESSION 16490.212 2 8249.106 3S.5647 0.000
RESIDUAL 85.561 4 21.390

DEP VAR: k....7 Us 6 MULTIPLE Rs 0.999 SQUARED MULTIPLE Ru 0.998

ADJUSTED SQUARED MULTIPLE Rs 0.996 STANDARD ERROR OF ESTIMATE: 1.642

VARIABLE COEFFICIENT STD ERROR STD COEr TOLERANCE T P(2 TAIL)

CONSTANT -5.700 1.616 0.000 • -3.527 0.039
Leaf C133 0.175 0.015 0.319 0.956 11.354 0.001
Asphalt 3160 0.693 0.022 0.882 0.956 31.400 0.000

ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P

REGRESSION 3566.358 2 1783.179 61ll567 0.000

RESIDUAL 8.086 3 2.695
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APPENDIX D

Regression and ANOVA Tables Used in the Mixture Analysis (coatdued)

MODL CONTAINS nO COUNSANT.

DNP VAR& A 11I 3: 6 MULTIPLE is 0.999 SQUARED MULTIPLE Ris 0.997

ADJUSTED SQUARED MULTIPLE as 0.997 STANDARD ERROR OF ESTIMATE:a 3.226

VARIABLE COGFFICIENT WTD ERROR TUTD COZ TOLERANCE T P(2 TAIL)

Leaf C133 0.150 0.027 0.227 0.379 5.580 0.005
Asphalt S1i0 0.640 0.032 0.610 0.379 19.903 0.000

ANALYSIS OF VARIANCE

SOURCE SUN-OF-SQUARES Dr .AN-SQuARI F-RATIO P

REGRESSION 16542.149 2 8271.074 724.,24 0.000

RESIDUAL 41.625 4 10.406

MODEL CONTAINS NO CONSTANT.

DIP VAR$ .W Z1 Ns 6 MULTIPLE is 0.996 SQUARED MULTIPLE Rs 0.995
ADJUSTED SQUARED MULTIPLE Ris 0.994 STANDARD ERROR OF ESTIMATEs 4.467

VARIABLE CORFFICIENT STD ERROR STD COZY TOLERANCE T P(2 TAIL)

Grass C125 0.132 0.035 0.232 0.320 3.785 0.019
Asphalt 3160 0.631 0.048 0.798 0.320 13.017 0.000

ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES DF MUE-SQUARE F-RATIO P

REGRESSION 16503.964 2 8251.982 A13.58 0.000

RESZDUAL 79.809 4 19.952

MODEL CONTAINS NO CONSTANT.

DIP VARs kMn •175 N: 6 MULTIPLE Rs 0.990 SQUARED MULTIPLE R: 0.979

ADJUSTED SQUARED MULTIPLE Ri 0.974 STANDARD ERROR OF ESTIMATE: 9.239

VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE T P(2 TAIL)

Water 3190 -0.151 0.283 -0.138 0.076 -0.531 0.623
Asphalt 3140 0.887 0.205 1.122 0.076 4.319 0.012

ANALYSIS OF VARIANCE

SOURCE SUN-OF-SQUARES DF NEAN-SQUARE F-RATIO P

REGRESSIOM 16242.305 2 8121.153 = 0.000

RESIDUAL 341.468 4 85.367
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APPENDIX E

"APPENDIX E: Ljnear Model Results for Three Eadmembers

Regression Results for Tbree-Endmember Mixture Analysis

cap VaaI Ii...i13.L.- U 6 MULTIPLE Re 0.999 SQUARED MULTIPLE Ri 0.999
ADJUSTED SQUARED MULTZPLE Re 0.998 STANDARD ZEfOR OF ESTIMATES 2.459

VARIZABE ODEFFICIENT STD ERROR i COW TOLERANCE T P (2 TAIL)

Loaf C123 0.172 0.023 0.266 0.290 7.338 0.005
C..tce. 3162 0.070 0.016 0.191 0.191 4.286 0.023
water a1lt 0.666 0.035 0.624 0.357 19.113 0.000

ANALYSIS OF VARIANCE

SOURCE SUI-CF-SQUARES DF MEAN-SQUARE F-RATIO P

REGRZSSION 15843.500 3 5281.167 273,522 0.000
RESIDUAL 18.137 3 6.046

RESIDUALS

31 52 53 34 as 37
Loaf, Water -1.05 -1.28 2.68 -4.77 8.64 4.68
Concrete,Water 2.01 -4.28 -8.29 14.71 0.63 -5.97
Conerete,Water, Leaf 1.45 -2.30 -1.93 -1.11 2.30 -0.71

DURIUN-WATSON D STATISTIC 1.961
FIRST ORDER AUTOCORRELTION -0.052

KIGENVALUES OF UNIT SCALED X'X

1 2 3

2.550 0.325 0.125
CONDITION INDICES

1 2 3

1.000 2.799 4.518

VARIANCE PROPORTIONS

1 2 3

C133 0.037 0.375 0.588
3162 0.027 0.005 0.968
3190 0.044 0.628 0.328

CORRELATION MATRIX OF R•GRZSSION COEFFICIENTS

C133 B162 3190

C133 1.000
3162 -0.682 1.000
B190 -0.005 -0.583 1.000
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APPFNDIX E

Regr•ssi• Results for Three-Endmember Mixture Analysis (continued)

DEP VARs ihomas II& 6 MULTIPLE Ri 1.000 SQUA.ID MULTIPLE RI 1.000
ADJUSTED SQUAlID MULTIPLE Ri 0.999 STANIDARD BRROR OF ESTIMATE: 1.361

VARIABLE CCUFFICIZET STD ERRO STD Coup TOLERANCI T P(2 TAIL)

Grim. C125 0.192 0.014 0.344 0.730 13.512 0.001
Casonekt 5162 0.028 0.011 0.077 0.123 2.494 0.088
Water 3190 0.703 0.019 0.659 0.351 36.125 0.000

ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES DF NEAN-SQUARE F-RATIO P

REGRESSION 15856.081 3 5285.360 2.53JZ7 0.000
RESIDUAL 5.556 3 1.852

RESIDUALs
a1 52 53 34 as 37

Concrete,Wat.er, Grass 0.77 -2.00 -0.08 -0.49 0.80 -0.25

DURBIN-WATSON D STATISTIC 2.575
FIRST ORDER AUTOCORRELATION -0.346

EIGENVALUES OF UNIT SCALED X'X

1 2 3

2.599 0.324 0.077
CONDITION INDICES

1 2 3

1.000 2.831 5.828

VARIANCE PROPORTIONS

1 2 3

C125 0.023 0.184 0.793
5162 0.017 0.012 0.971
B190 0.041 0.690 0.269

CORRELATION MATRIX OF REGRESSION COEFFICIENTS

C125 3162 B190

C125 1.000
8162 -0.810 1.000
B190 0.137 -0.576 1.000
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LIST OF ACRONYMS

AFB Air Force Base

AVIRIS Airborne Visible/Infrared Imaging Spectrometer

DMA Defense Mapping Agency

DOC Degree of Compliance

GSD Ground Sampling Distance

GT Ground Truth

IFOV Instantaneous Field of View

ISODATA Iterative Self-Organizing Data Analysis Techniques A

JPL Jet Propulsion Laboratory

LAS Land Analysis System

MVN Multivariate Normal

NHAP National High Altitude Photography

RGB Red, Green, Blue

RW Runway

SPL TECs Space Programs Laboratory

SRTF/MBIPS Space Research Test Facility, Multiband Image Processing System

TEC U.S. Army Topographic Engineer Center

TM Landsat Thematic Mapper

TTADB DMA's Tactical Terrain Analysis Data Base
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